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1 Introduction

MyThOS, as a reduced operating system, gives application developers the possibility
to control its behavior and configuration at a fine-grained level. For this purpose,
it can be configured to suit the needs of the application to a much higher degree,
than traditional operating systems. However, in order to utilize this configurability,
application developers need additional knowledge about MyThOS in order to write
performant applications. This document is intended to supply required knowledge to
them and serve as both a starting point for development and a reference document.
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Therefore, this document contains both descriptions of MyThOS’ interfaces and
examples how to use them.

In Section 2, an example application is presented, including hints for the devel-
opment of different applications and information about the compilation process
required for them to run on MyThOS. Section 3 describes the system call interface of
MyThOS, that may be used by applications. Since this interface is very reduced and
generic, various user space objects are provided to conveniently interact with the
kernel and the application’s kernel objects. These are further described in section 4.
Section 5 serves as a guideline for the development of own kernel objects, that can
be used to move functionality from the user space into the kernel. Finally, Section 6
illustrates these development steps with a concrete example.

2 Creating and Compiling a User Application

The MyThOS kernel automatically loads a default initial application after the operat-
ing system is booted and the available hardware is appropriately configured. The
code of the init application lies in the kernel/app/init-app/app directory of the
kernel source tree and the int main() function in init.cc is the entry point for the
application execution. In the following just some code excerpts are depicted explain-
ing the general application behavior. For better understanding please introspect in
parallel the original source code in init.cc.

The init application first creates a predefined kernel object (KO) of type
mythos::Example1 using a preconfigured untyped memory space (kmem), portal
(portal) and object factory (mythos::init::EXAMPLE_FACTORY):

1 mythos::Portal portal(mythos::init::PORTAL, msg_ptr);
2 mythos::UntypedMemory kmem(mythos::init::UM);
3 mythos::CapMap myCS(mythos::init::CSPACE); // Capability Space
4 ...
5

6 int main() {
7 ...
8 mythos::Example example(mythos::init::APP_CAP_START);
9 auto res1 = example.create(portal, kmem, mythos::init::EXAMPLE_FACTORY);

10 res1.wait();
11 ASSERT(res1.state() == mythos::Error::SUCCESS);
12 ...
13 }

1implemented in kernel/runtime/kobject/runtime/Example.hh
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Each kernel object inherits from a generic type KObject2. It encapsulates (and thus
is referenced by) a certain kernel capability (e.g. mythos::init::APP_CAP_START)
which is later used for object registration and query within application’s capability
space. While example is only a user-space wrapper of the KO, the actual object
creation within the kernel is triggered by its create(...) function. The create(...)
function is object-specific and has to be provided by the object developer. It triggers
the required creation steps, which are performed on behalf of a special predefined
object protocol within the kernel. That protocol guides the creation procedure and
genral usage of the object (see later Section 5 for more information). The procedure
automatically enacts the referenced object factory and registers the newly created
object within application’s capability space. Thereby, the portal object is required
for communication with the kernel and it performs the actual system call and protocol
invocation. Since system invocations are asynchronous, waiting for the result of each
kernel invocation via res1.wait() blocks until completion.

As next, the init application invokes a basic printMessage(...) function of the
Example object (on line 1) and finally deletes that object from its capability space (on
line 4):

1 auto res2 = example.printMessage(res1.reuse(), obj, sizeof(obj)-1);
2 res2.wait();
3 ASSERT(res2.state() == mythos::Error::SUCCESS);
4 auto res3 = myCS.deleteCap(res2.reuse(), example);
5 res3.wait();
6 ASSERT(res3.state() == mythos::Error::SUCCESS);

For each new invocation the same protal is reused. The result of each invocation
is a reference to the engaged portal and its invocation buffer. Beyond retriev-
ing system call results, this mechanism also allows for checking the execution
status of a respective invocation, for example for polling or waiting for a result (see
kernel/runtime/async/runtime/PortalBase.hh). MyThOS also supports a variety
of error codes which are defined in kernel/mythos/error/mythos/Error.hh, like
for example SUCCESS, INVALID_ARGUMENT, NOT_IMPLEMENTED, INVALID_CAPABILITY,
REQUEST_DENIED etc.

For more information on the peculiarities and the procedure of object creation and
invocation from a user application please refer to Sections 5 and 6.

Finally the init app creates and activates two execution contexts ec1 and ec2 which
(when later executed) simply print a short debug message (line 6) and then suspend

2see kernel/runtime/async/runtime/PortalBase.hh
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(line 7). The following code excerpt shows the creation and activation procedure of
one ExecutionContext:

1 mythos::PageMap myAS(mythos::init::PML4); // Address Space
2

3 void* thread_main(void* ctx)
4 {
5 char const str[] = "hello thread!";
6 mythos::syscall_debug(str, sizeof(str)-1);
7 return 0;
8 }
9

10 int main() {
11 ...
12 mythos::ExecutionContext ec1(mythos::init::APP_CAP_START);
13 auto res1 = ec1.create(portal, kmem, mythos::init::EXECUTION_CONTEXT_FACTORY,
14 myAS, myCS, mythos::init::SCHEDULERS_START,
15 thread1stack_top, &thread_main, nullptr);
16 res1.wait();
17 ASSERT(res1.state() == mythos::Error::SUCCESS);
18 ...
19 }

An execution context is also a predefined MyThOS kernel object. First a user
space wrapper ec1 is instantiated (line 12) and linked with a certain capability3. The
actual creation and activation of the thread is triggered again by its create(...)
function, which accepts a variety of parameters, as for example the thread’s address
and capability space, stack, a thread factory and scheduler references, as well as a
reference to thread’s entry point thread_main(...) (line 3).

The init application is exported as a module (see kernel/app/init-app/mcconf.module),
which can be selectively included in kernel’s build process via the mcconf tool. The
module definition is the place, where also the build configuration and procedure of
the application can be customized in terms of build commands, compiler/linker flags
and further options. These are automatically included to the respective build targets
for the application in the final Makefile of the kernel. However, the application is
linked to a separate ELF-binary, which is automatically embedded into the kernel
image. A basic application loader in the kernel automatically queries, loads and
executes the application during runtime. A dynamic application loader is intended
to be included in future versions of MyThOS. The latter will allow for on-demand
application loading and start from a Xeon Phi host system.

3In this example the capability previously used for the Example object is reused.
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The init application provides a good starting point and a general guideline for the
development of new MyThOS applications. An implementation should follow that
example and it must be integrated in a similar way into the directory structure of the
kernel (e.g. kernel/app/{my-app}/app/init.cc). It can be exported and composed
within the kernel as a different module (e.g. kernel/app/{my-app}/mcconf.module).
The provided module can be then simply added to a general kernel configuration
like for example kernel-amd64.config. However, an application should at least
implement an int main() function. The kick-off procedure of the init application is
defined within the assembly file kernel/app/my-app/app/start.S, which should be
reused by custom applications.

Limitations:

Due to the reduced nature of MyThOS, applications have to be compiled carefully
to be executable on MyThOS. This will also be true once the dynamic application
loader is in place. Currently, MyThOS does not offer the full interface of commonly
used libraries like the LibC. Therefore, the compiler has to be instructed not to
include exception handling into the code (-fno-exceptions) and omit including
stack protectors (-fno-stack-protector). The linker has to be configured to not
link against the standard libraries (-nostdlib) and link against all other libraries
statically (-static), since dynamically loaded libraries are not yet supported by
MyThOS. However, GCC-specific functions are included in the code of MyThOS.
Therefore, these libraries have to be included into the code (-lgcc).

Since MyThOS is designed to run on manycore architectures, which often have
limited support for advanced istruction set extensions, these should be disabled in
the compiler. When compiling an application for the Intel© Xeon Phi™, all of MMX,
SSE, SSE2, SSE3 and 3DNow should be disabled (-mno-mmx -mno-sse -mno-sse2
-mno-sse3 -mno-3dnow).

3 Basic System Call Interface of MyThOS

Compared to general purpose operating systems, MyThOS offers a relatively small
set of system calls for the interaction of applications with the operating system
kernel. In the following all system calls are listed, including a description of
their semantics. The user space wrappers of those system calls are defined in
kernel/mythos/invocation/mythos/syscall.hh.
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Note: This is the lowest level interface to the system. More general abstractions
based on that definitions exist. For example consider object and system related invoc-
ations through a portal defined in kernel/runtime/async/runtime/PortalBase.hh.
These functions finally decompose into basic system calls as defined in
kernel/mythos/invocation/mythos/syscall.hh.

void syscall_debug(char const* start, uint64_t length): This system call is
used to print debug messages to the text console. In the current implementa-
tion, the output is redirected to a static memory buffer, from where it is then
output to the user’s terminal by an helper application running on the MyThOS
host. The parameter start points to the buffer containing the text to be output,
length determines the length of the string. After the output is written into the
buffer, the syscall returns to the application. The actual output to the user’s
terminal is then executed asynchronously on the host computer.

void syscall_exit(uint64_t rescode): This system call is called to exit the cur-
rently running application. When issuing this system call, the currently running
ExecutionContext exits itself and yields control to the kernel. The parameter
rescode follows the usual semantics of a result code, where the value 0 indic-
ates successful execution of the application or thread, while all other result
codes indicate unsuccessful execution, with a semantic, that is up to the applic-
ation.

KEvent syscall_invoke(CapPtr portal, CapPtr object, void* userctx): All func-
tionality in the kernel of MyThOS is encapsulated into kernel objects. Using this
system call, applications can interact with these kernel objects in a well-defined
and controlled manner. This system call can be used to request a specific
service, from the kernel object object. For the communication a portal is used,
that is passed to the system call in the parameter portal. The called kernel
object does not necessarily have to be located locally. The translation of the
application’s system calls to either local or remote system calls is transparent
to the user. An additional reference userctx is passed, which is later returned
to the application upon reply of the kernel object. This system call is executed
asynchronously. Additional system calls have to be issued to check for the result
of the invocation. Note: as already mentioned, for particular cases there are
already wrappers providing a higher level interface for handling results and
invocation status, as for example PortalBase.h.
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KEvent syscall_poll(): This system call checks, whether the application received a
response to a previously issued system call or an invocation by a remote portal.
If a notification was received, this is indicated in state-member of the returned
KEvent-object. The reference, that was passed to the corresponding invoke
system call (either locally or remotely via a portal) is made available to the
application in the user-member of the returned object. This system call returns
immediately, even if there was no notification pending.

KEvent syscall_wait(): This system call follows the same semantics as the
syscall_poll system call, but blocks until a notification was received. It’s
therefore follows a synchronous processing model.

KEvent syscall_invoke_poll(CapPtr portal, CapPtr object, void* userctx)

KEvent syscall_invoke_wait(CapPtr portal, CapPtr object, void* userctx):
These two system calls combine an invocation of a kernel object with the
check for pending notifications. They follow the semantics of the individual
system calls as described above and are available in a blocking (wait) and
a non-blocking (poll) implementation. The combination of two system calls
into a single one resembles the common send-receive pattern and potentially
can reduce the number of required system calls and therefore the number of
switches from user space to kernel space and back.

Note: for portal based communication with the kernel, future objects of type
kernel/runtime/async/runtime/FutureBase.hh are used in order to poll and
synchronize on results. These are abstractions of the basic syscall_{poll,wait}()
functions and the PortalBase type inherits the implementation provided in
FutureBase.hh.

4 Interface of the MyThOS Runtime Environment

Due to the focus of the MyThOS project on developing an operating system, the
support for applications in terms of runtime environment are limited, compared to
general purpose operating systems like Linux. The main point of interaction with the
operating system is the use of portals, which represent the communication endpoint
between the application and MyThOS. The interaction between the application and
the portals is detailed in the previous section of this document.

For the interaction of applications with other kernel objects, some user space
representations are provided to application developers, that encapsulate the
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communication with the respective kernel object and therefore provide the
developer with a more specialised interface than generic portals. In the fol-
lowing, these user space representations and their interfaces are presented.
For further reference, the user space representations are located in the folder
kernel/runtime/kobject/runtime, the message formats used for communication
with the respective kernel objects are specified in protocols, which are stored in
kernel/mythos/invocation/mythos/protocol and the kernel space implementa-
tions of the kernel objects can be found in the folder objects. The filenames and
folder names are identical to the headings and class names used in this chapter.

4.1 CapMap

A capability map object is used to manage the application’s capability space by
creating, moving, deleting or revoking capability pointers. These are references to
kernel objects that can be accessed and utilised by the application.

A new capability map object can be instantiated by calling:

PortalFutureRef<void> create(PortalRef pr, UntypedMemory kmem, CapPtr factory,
CapPtrDepth indexbits, CapPtrDepth guardbits, CapPtr guard)

This method creates a new capability map via the portal pr in the memory area kmem
using the factory referenced by factory. Additionally, indexbits and guardbits can
be set, which are further detailed in Deliverable D2.2.

An existing capability map can be utilised to manipulate the capability entries,
which it contains. New capabilities can be created using the methods

PortalFutureRef<void> derive(PortalRef pr, CapPtr src, CapPtrDepth srcDepth,
CapPtr dstCs, CapPtr dst, CapPtrDepth dstDepth, CapRequest req)

and reference(...), which implements the same method signature. These methods
create new capabilities, that are children of or references to an existing capability
src in the called capability space. The newly created capabilities are then inserted
into the capability space dstCs at the location dst. Additionally, desired capability
flags can be specified in the parameter req.

The method

PortalFutureRef<void> move(PortalRef pr, CapPtr src, CapPtrDepth srcDepth, CapPtr
dstCs, CapPtr dst, CapPtrDepth dstDepth)
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can be used to move a capability src from the called capability space to another
capability space dstCs at location dst. Thereby, capabilities can be separated into
multiple capability spaces to pass them to individual applications or application parts.

To delete a capability from the capability map the method

PortalFutureRef<void> deleteCap(PortalRef pr, CapPtr src, CapPtrDepth srcDepth)

can be called, which deletes the capability src from the map. Furthermore, the
method

PortalFutureRef<void> deleteCap(PortalRef pr, KObject src)

can be used to delete a given kernel object from the map, regardless of its assigned
corresponding capability. For these two methods, respective revokeCap(...) meth-
ods exist with the same signatures, that can be used to revoke individual capabilities.

4.2 DebugSink

This class represents a small wrapper for the debug system call and can be used to
output debug information (or any other text) to the text console and thereby make it
available to users or developers. Its functionality is contained in the function

void write(char const* str, size_t len)

which takes a string and its length as input parameters and outputs this string to the
console.

4.3 ExecutionContext

As detailed in deliverable D2.2, Execution Context objects are used to represent the
execution state of a single software thread. Therefore, they are a very important
interaction point for application developers to control the degree of parallelism in
their applications and to achieve actual concurrency within MyThOS. Their interface
looks as follows:

PortalFutureRef<void> create(PortalRef pr, UntypedMemory kmem, CapPtr factory,
PageMap as, CapMap cs, CapPtr sched, void* stack, StartFun start, void*
userctx)
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This function is used to create a new ExecutionContext kernel object. The parameter
pr specifies the pointer to the portal that should be used for this operation. kmem
specifies the kernel memory area, in which the new EC should be allocated. factory
is a pointer to the kernel object responsible for the actual creation of the object and
has to be provided by the operating system beforehand. In the parameters as and
cs the address space and the capability space of the application are passed. The
parameter sched specifies the scheduling context, which is designated to execute the
newly created EC, while its user space stack is placed at the virtual address specified
by the parameter stack. start is a pointer to the initial function executed by the EC
in user space and userctx can be used by the application developer to later identify
individual ECs and is passed to the function specified by start.

PortalFutureRef<void> configure(PortalRef pr, PageMap as, CapMap cs, CapPtr sched)

This method is used to configure the EC, which is accessed via the local portal pr
to use the page map, capability map and scheduling context, specified by as, cs or
sched respectively, in the future.

4.4 Frame

A frame object represents a memory frame, that can be accessed by the application
and is allocated from an UntypedMemory object via the method

PortalFutureRef<void> create(PortalRef pr, UntypedMemory kmem, CapPtr factory,
size_t size, size_t alignment)

Additionally to the local portal pr, the allocation pool kmem and the factory for Frame
objects factory, the size and the alignment requirements for the newly allocated
frame are passed as arguments in the parameters size and alignment.

The method

PortalFutureRef<protocol::Frame::Info> info(PortalRef pr)

returns various information about a given memory frame, like its size and alignment
accompanied by permissions, that are set to this memory frame, like its executable
and writable flags.
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4.5 PageMap

Objects of the class PageMap represent a single table in the hierarchical page table
structure of the application. On creation, each page map and their contents are
bound to a specific level in the page table hierarchy. The entries of a page map point
to either a memory frame of the same level or a page map of the next lower level.
PageMap objects can be created using the method

PortalFutureRef<void> create(PortalRef pr, UntypedMemory kmem, CapPtr factory,
size_t level)

Besides the local portal pr, the memory area used for allocation kmem and the page
map factory factory, the level of the page map has to be specified.

After creation (and potentially configuration) a page map can be put into action by
calling the method

PortalFutureRef<protocol::PageMap::Result> installMap(PortalRef pr, PageMap
pagemap, uintptr_t vaddr, size_t level, MapFlags flags)

Thereby, the page map is mapped into the higher level table pagemap, which then
contains mappings for the virtual addresses in the range of vaddr at the given level
of page tables. Additionally, flags can be set on the page map, e.g. write permissions
or caching behaviour. A page map can be removed from the page table hierarchy
using the method

PortalFutureRef<protocol::PageMap::Result> removeMap(PortalRef pr, uintptr_t
vaddr, size_t level)

With the method

PortalFutureRef<protocol::PageMap::Result> mmap(PortalRef pr, Frame frame,
uintptr_t vaddr, size_t size, MapFlags flags)

a given memory frame can be mapped to the virtual user space address vaddr. Again,
flags can be specified to customise the mapping process. The reverse operation is
available via the method

PortalFutureRef<protocol::PageMap::Result> munmap(PortalRef pr, uintptr_t vaddr,
size_t size)

which removes the frame from the page map. Existing mappings can be remapped
from sourceAddr to destAddr by calling the method

12



MyThOS D4.3 Developer Cookbook

PortalFutureRef<protocol::PageMap::Result> remap(PortalRef pr, uintptr_t
sourceAddr, uintptr_t destAddr, size_t size)

Flags, that were previously set for a page map or a frame can be altered to a new set
of flags by using the method

PortalFutureRef<protocol::PageMap::Result> mprotect(PortalRef pr, uintptr_t
vaddr, size_t size, MapFlags flags)}

The semantics of these method calls are comparable to the linux system calls mmap,
munmap, mremap and mprotect.

4.6 Tasklet

Tasklets are used for two purposes in MyThOS. They represent the smallest unit of
executed code and at the same time serve as a token in a token-based flow control
system. A tasklet encapsulates a single functor, that can be set and retrieved. For
this purpose the Tasklet class exposes two self-explanatory methods:

template<class FUNCTOR>
void set(FUNCTOR const&& fun);

template<class MSG>
MSG get() const;

4.7 UntypedMemory

This object represents a memory pool, from which memory can be allocated to be
either used by the application (Frames) or to be used to host kernel objects. The
UntypedMemory objects only expose one function to the user space, which is defined
as

PortalFutureRef<void> create(PortalRef pr, UntypedMemory kmem, CapPtr factory,
size_t size, size_t alignment)

This method is used to derive an UntypedMemory object from an UntypedMemory
object, splitting one of these objects into two. Thereby, a hierarchical memory
structure is built up. For this purpose, it is passed a pointer to the local portal pr,
the original UntypedMemory object kmem, a pointer to an object capable of creating
new UntypedMemory objects factory and the new objects desired size and memory
alignment.
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4.8 Library Functions

In addition to the functions detailed above, that directly interact with the operating
system via system calls, a small set of convenience functions was is implemented,
that conform to the default interfaces known for these functions from the C/C++
string library. Currently, the set of functions comprises of memcpy to copy memory
ranges, memset to initialise memory regions, strlen to determine the length of a
string and strcmp to check two strings for the lexical order and equality.

5 Development of Kernel Objects

This section describes the steps necessary to create a new kernel object. First, the
IKernelObject interface (Listing 1) is discussed. It has to be implemented by all
kernel objects in order to participate in the resource management and processing
of system calls. Then, the allocation and initialisation of kernel objects through
factories is described. Finally, an overview over the synchronisation monitors and
the weak references mechanism is given.

As already explained in Section 2, the kernel source includes an example object,
which serves as a starting point for the creation of custom Kernel Objects and as a
mock for testing object allocation and deletion. For further information, consider the
documentation embedded into the source code. Most of the code embedded here is
part of the Example object.

5.1 Ressource management

The addressRange() method is used by the resource inheritance tree for parent-ship
tests. The method has to return the physical address range that is used by the object.
The range has to be a superset of the address ranges of all derived child objects in
the capability inheritance tree. Kernel objects that will have no children can simply
use the default implementation.

deleteCap() and deleteObject() are both part of the multistep deletion process.
deleteCap() notifies the object that a capability is going to be deleted. For most
objects, this will have no effect for reference and derived capabilities. For original
capabilities, the objects recursively deletes its capability entry and schedules itself
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1 class IKernelObject : public ICastable {
2 public:
3 virtual Range<uintptr_t> addressRange(Cap self);
4 virtual optional<Cap> mint(Cap self, CapRequest request);
5 virtual optional<void> deleteCap(Cap self, IDeleter& del) = 0;
6 virtual void deleteObject(Tasklet* t, IResult<void>* r) = 0;
7 virtual Range<uintptr_t> objectRange() const = 0;
8 virtual optional<CapEntryRef> lookup(Cap self, CapPtr needle, CapPtrDepth

maxDepth);
9 virtual void invoke(Tasklet* t, Cap self, IInvocation* msg);

10 };
11

12 class ICastable {
13 public:
14 virtual optional<void const*> vcast(TypeId id) const;
15 };

Listing 1: The IKernelObject interface.

1 optional<void> ExampleObj::deleteCap(Cap self, IDeleter& del) {
2 if (self.isOriginal()) del.deleteObject(del_handle);
3 return Error::SUCCESS;
4 }

Listing 2: Example handler for capability revocation.

15
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1 void ExampleObj::deleteObject(Tasklet* t, IResult<void>* r) {
2 monitor.doDelete(t, [=](Tasklet* t){ this->_mem->release(t, r, this); });
3 }

Listing 3: Example handler for asynchronous object deletion.

for asynchronous deletion using the IDeleter object given as a parameter. Listing 2
shows a simple example for an object without any embedded capability entries.

deleteObject() carries out the final step of the asynchronous deletion. The object
will use its deletion monitor to wait for all outstanding asynchronous request to com-
plete and then asynchronously requests the deletion from the UntypedMemory object
it was allocated from. An example is shown in Listing 3. The memory’s release()
method will call the object’s objectRange() to query the address range that is used
by the object itself. First, the objects virtual destructor ~IKernelObject() is called
in order to let the object free all contained additional memory blocks. Then, the
objects memory is freed. Finally, the deleter is notified about the completion by
replying to the IResult pointer.

The mint() method is used when creating a reference or derived capability. This
mechanism allows to restrict access rights, add communication badges and similar
by altering the data portion of the capability according to the request argument.
The meaning of the request arguments is defined by the actual object because the
capability data portion is interpreted only by the object itself. If a kernel object does
not accept the minting request, it should return an error code.

5.2 System Calls as Capability Invocation

The lookup() method is used by the system call entry code in order to find the target
object that matches the given capability pointer. The search in the caller’s capability
space recursively walks through its capability maps. The default implementation
of this method fails and returns an error code. A custom implementation is only
necessary if the object acts as a capability map.

The invoke() method implements the receiving side of the capability invocation to
a kernel object. Its default implementation simply returns with an error. Listing 4
shows an example of the invocation handling. The invoke() method dispatches
the message based on the message label and asynchronously calls the appropriate
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1 void ExampleObj::invoke(Tasklet* t, Cap self, IInvocation* msg) {
2 switch (msg->getLabel()) {
3 case 0:
4 return monitor.request(t, [=](Tasklet* t) { printMessage(t, self, msg); });
5 default:
6 msg->replyResponse(Error::INVALID_REQUEST);
7 }
8 }
9

10 void ExampleObj::printMessage(Tasklet* t, Cap self, IInvocation* msg) {
11 // may use data portion of self for access control and badges...
12 auto msgdata = msg->getMessage();
13 // do something useful with the message data...
14 message.replyResponse(Error::SUCCESS);
15 monitor.requestDone();
16 }

Listing 4: Example invocation handler.

implementation. The implementation checks the caller’s access rights by inspecting
the capability self that was used to access the object. Then, the arguments are
copied from the message into local buffers and checked for validity. The copy is
crucial for security because otherwise concurrently running application threads
could manipulate the arguments after the sanity check have been passed. After
carrying out the request, the object replies and releases the its monitor.

The IInvocation interface provides several more methods that help, for example,
to look up additional kernel objects in the callers capability space, access the callers
ExecutionContext, and the caller’s logical address space configuration.

5.3 Interactions between Kernel Objects

When a capability lookup is used to retrieve a pointer to another kernel object,
this pointer is still typed as IKernelObject. This is sufficient to pass invocation
messages to the object. However, the invocation mechanism is complex and possibly
costly. Therefore it would be more efficient and convenient to call the kernel object’s
implementation-specific methods directly.

Normal C++ programs use the compiler-generated runtime type information (RTTI)
and the dynamic_cast conversion. This information is not available in the kernel
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1 virtual optional<void const*> vcast(TypeId id) const override {
2 if (id == TypeId::id<UntypedMemory>()) return this;
3 if (id == TypeId::id<IAllocator>()) return static_cast<IAllocator const*>(this);
4 return Error::TYPE_MISMATCH;
5 }

Listing 5: Example run-time type conversion in the UntypedMemory object.

1 auto alloc = ptr->cast<IAllocator>();
2 if (alloc) { // checks whether the conversion was successful
3 alloc->allocate(...);
4 }

Listing 6: Casting a kernel object into a more specific type.

in order to reduce its size. Instead, the conversion is accomplished through the
ICastable mechanism. The method vcast() is implemented by each kernel object
in order to hand out pointers to more specific interfaces. Listing 5 shows an example.
The converted pointer is then retrieved via the cast() helper method as shown in
Listing 6.

5.4 Object Creation

Kernel objects are created with memory from a single UntypedMemory via the help of
a factory object. The only exception are a few initial objects that exist statically. The
factory has to implement the IFactory interface, which is shown in Listing 7.

The umcap capability belongs to the UntypedMemory that called the factory. This
value is later needed to complete the insertion into the resource tree. The mem
argument points to the IAllocator interface of the UntypedMemory. Because the
memory calls the factory the memory’s synchronisation monitor has been entered,

1 class IFactory {
2 public:
3 virtual optional<void> factory(Cap umcap, IAllocator* mem, IInvocation* msg,
4 CapEntry* tgtentry) = 0;
5 };

Listing 7: The IFactory interface.
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synchronous calls to mem can be used safely. The created object has to store mem in
order to be able to release its memory later. The tgtentry points to the capability
entry that shall receive the first capability that points to the newly created kernel
object. Finally, the msg arguments contains the invocation buffer that was passed
from userland with additional initialisation parameters for the new object.

An example factory implementation is shown in Listing 8. First, the target capability
entry is acquired and locked in order to prevent data races (line 3). Then, memory
for the object is allocated and the object is constructed in this memory. The factory
and the object constructor can allocate additional memory from mem (line 2). If the
allocation fails, the memory has to be released and the target capability entry has to
be reset (lines 5–7).

Finally, the original capability of the created object is inserted as child of the
UntypedMemory that it was allocated from (line 10). The parent entry is retrieved
from the invocation message and should match umcap. The operation fails when the
parent object was deleted concurrently. In this case, the object and the target entry
have to be released (lines 11–14). The original capability can be either stored as
member variable in the created object, as shown in the example, or can be stored
directly in the target entry. In the example, a reference capability is written to the
target entry.

5.5 Serialisation Monitors

The monitors are used by kernel objects to serialise asynchronous method calls and
select the place (hardware thread) that processes the calls. Currently, four monitor
variants are available. The choice depends on the synchronisation needs. In most
cases, the NestedMonitorDelegating is a good choice.

DeletionMonitor. This monitor implements a reference counter that is used to
delay the deletion request until all counted references were released. It is used as
base class for the other monitors. The methods acquireRef() and releaseRef()
increase or decrease the reference counter, respectively. The doDelete() method
schedules a Tasklet to be executed the next time the reference counter reaches zero.
The Tasklet is processed at the place of the releaseRef() caller. If the reference
counter is zero already, the Tasklet processed immediately.
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1 optional<void> ExampleFactory::factory(Cap umcap, IAllocator* mem,
2 IInvocation* msg, CapEntry* tgtentry) {
3 if (!tgtentry->acquire()) return Error::LOST_RACE;
4 auto obj = mem->create<ExampleObj,64>(mem, ...); // create with 64b alignment
5 if (!obj) {
6 tgtentry->reset();
7 return Error::INSUFFICIENT_RESOURCES;
8 }
9 Cap tgtcap(obj);

10 auto res = cap::inherit(msg->getCapEntry(), obj->ownRoot, umcap, tgtcap);
11 if (!res) {
12 mem->release(obj);
13 tgtentry->reset();
14 return res.state();
15 }
16 return cap::inherit(obj->ownRoot, tgtentry, tgtcap, tgtcap.asReference());
17 }

Listing 8: An example factory implementation.

SimpleMonitorHome. This variant comes close to the classic monitor concept.
The request() method schedules the given Tasklet at a predefined place called home.
At the end of each request handler implementation, requestDone() has to be called
in order to release the reference counter. Because all Tasklet scheduled by the
monitor are processed on the same hardware thread, they all are mutually exclusive.

NestedMonitorHome. This extension of the previous monitor differentiates
between asynchronous requests and responses in order to implement a form
of nested locking. The next requests is processed only after the previous has
finished by calling requestDone(). Requests can issue sub-requests to other kernel
objects and the last response has to call responseAndRequestDone() instead of just
responseDone(). Developers should be careful with cyclic dependencies between
kernel objects because the mutually exclusive request are prone to deadlocks – like
in any scenario with nested locks that can be entered just once.

NestedMonitorDelegating. This monitor has the same request /response inter-
face as NestedMonitorHome but the monitor is not bound to a specific home place.
Instead, the first request that acquires exclusive access sets the home to its caller’s
place. All responses to sub-requests will processed at this place. Further requests
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1 template<class Subject, class Object, class Revoker=RevokeByUnbind>
2 class CapRef : public CapRefBase {
3 public:
4 optional<void> set(Subject* subject, CapEntry& src, Cap srcCap);
5 optional<Object*> get() const;
6 void reset();
7 protected:
8 virtual void revoked(Cap self, Cap orig);
9 };

Listing 9: The weak reference capability interface.

that do not acquire exclusive access will be processed at this place, too. The last
requestDone() or responseAndRequestDone() releases the exclusive access, such
that later requests select a new home. This behaviour is based on the concept of
delegation locks.

5.6 Connecting Objects through Weak Reference Capabilities

Pointers between kernel objects require special care because the target object can
be deleted concurrently. This would leave dangling pointers, which result in fancy
bugs and headaches. In many cases, the associations between kernel objects are
established by the transfer of access rights. In MyThOS this is implemented by
passing a capability to the kernel object and the capability revocation can be used to
clean up such pointers. This idea is implemented by the CapRef class.

Listing 9 summarises the principal interface of CapRef. Basically, the object
contains a capability entry that holds a reference capability and a pointer to the
subject capability holder. The set() method inherits the reference from the src and
srcCap pair. It fails if a concurrent call to set() was faster or when the source entry
was deleted concurrently. The get() method returns a pointer to the capability’s
object casted to the desired object interface. It fails if the capability was never set
or was revoked meanwhile. The reset() method clears the reference and called
automatically from set().

During capability revocation, the revoked() method will be called synchron-
ously. It can be overridden by derived types. The default implementation calls
Revoker::apply(subject, object, self, orig). The default RevokeByUnbind calls
subject->unbind(object) synchronously in order to notify the reference holder. An
example usage is given in Listing 10.
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1 class Foo : public IKernelObject {
2 public:
3 optional<void> bindPortal(CapEntry& pcap); // calls portal.set(...)
4 protected:
5 CapRef<Foo, IPortal> portal;
6 friend class RevokeByUnbind;
7 void unbind(optional<IPortal*> o); // reacts to the revocation
8 };

Listing 10: An example use of weak references.

6 Example: Extending a Kernel Object

When developing an application, the developer at some point may decide to move
parts of its functionality to the kernel space to improve the application’s performance.
In this section we give an example, how to extend an existing kernel object with an
additional function, that then can be called from the user space application. The
process of initially developing a kernel object including all required methods is laid
out in the previous Section 5.

For convenience, each kernel object that is invocable from user space should
feature a runtime representation, which serves as a wrapper. For our Example object
suppose that it is extended with a printMessage() method. The according runtime
representation is listed in Listing 11. Runtime representations of kernel objects are
typically located in the folder kernel/runtime/kobject/runtime and encapsulate
the calls to the portal of the current Execution Context (e.g. see Listing 11, Line 13).
Here, a runtime method has to be defined, that calls the tryInvoke method on a
portal and may pass additional arguments to that method.

1 #include "runtime/PortalBase.hh"
2 #include "mythos/protocol/Example.hh"
3 #include "runtime/UntypedMemory.hh"
4

5 namespace mythos {
6

7 class Example : public KObject
8 {
9 public:

10 Example(CapPtr cap) : KObject(cap) {}
11

12 PortalFutureRef<void> create(PortalRef pr, UntypedMemory kmem, CapPtr
factory) {
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13 return pr.tryInvoke<protocol::Example::Create>(kmem.cap(), _cap, factory);
14 }
15

16 PortalFutureRef<void> printMessage(PortalRef pr, char const* str, size_t
bytes) {

17 return pr.tryInvoke<protocol::Example::PrintMessage>(_cap, str, bytes);
18 }
19 };
20

21 } // namespace mythos

Listing 11: Object’s Runtime Representation

For data exchange between user space and kernel space, invocation buffers are
used, that can be arbitrarily used by applications. Their contents are described by
protocols, that are stored in kernel/mythos/invocation/mythos/protocol. List-
ing 12 shows the overall definition of the protocol for our example object. The
corresponding class contains a list of available methods (enum), that has to be exten-
ded with the new one. This list is important for the method dispatching process in
the object, i.e. dispatchRequest(), which is explained later.

1 #include "mythos/protocol/common.hh"
2 #include "mythos/protocol/UntypedMemory.hh"
3 #include <cstring>
4

5 namespace mythos {
6 namespace protocol {
7

8 struct Example {
9 constexpr static uint8_t proto = EXAMPLE;

10

11 enum Methods : uint8_t {
12 PRINT_MESSAGE,
13 };
14

15 struct PrintMessage : public InvocationBase {
16 typedef InvocationBase response_type;
17 constexpr static uint16_t label = (proto<<8) + PRINT_MESSAGE;
18 PrintMessage(char const* str, size_t bytes)
19 : InvocationBase(label,getLength(this))
20 {
21 if (bytes>InvocationBase::maxBytes) bytes = InvocationBase::maxBytes;
22 this->bytes = uint16_t(bytes);
23 this->tag.length = uint8_t((bytes+3)/4);
24 memcpy(message, str, bytes);
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25 }
26 uint16_t bytes;
27 char message[InvocationBase::maxBytes-2];
28 };
29

30 struct Create : public UntypedMemory::CreateBase {
31 Create(CapPtr dst, CapPtr factory) : CreateBase(dst, factory) {}
32 };
33

34 template<class IMPL, class... ARGS>
35 static Error dispatchRequest(IMPL* obj, uint8_t m, ARGS const&...args) {
36 switch(Methods(m)) {
37 case PRINT_MESSAGE: return obj->printMessage(args...);
38 default: return Error::NOT_IMPLEMENTED;
39 }
40 }
41

42 };
43

44 } // namespace protocol
45 } // namespace mythos

Listing 12: Object’s Protocol Definition

Additionally, the format of the invocation buffer has to be specified here, inside a
method-specific struct which includes a constructor that receives all arguments,
that were previously passed to the runtime object. Furthermore, the method
dispatchRequest has to be adapted to call the correct method printMessage()
(line 37) of the kernel object when receiving a message. This method of the kernel
object then carries out the actual work that the developer wanted to move into the
kernel.

The actual kernel object’s implementation is stored in
kernel/objects/<objectName>/objects as a respective class ExampleObj defined
in Example.hh and Example.cc. Here, the method called by the protocol’s dispatcher
has to be implemented. This method is responsible for extracting the required
information from the invocation buffer and processing it. Data can be returned to
the application through the invocation buffer. Listing 13 shows the declaration of
the object class and, besides the typical object methods as previously explained
in Section 5, the extended method printMessage() in line 16. The respective
implementation of the method is shown in Listing 14.
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1 class ExampleObj : public IKernelObject
2 {
3 public:
4 ExampleObj(IAsyncFree* mem) : _mem(mem) {}
5 ExampleObj(const ExampleObj&) = delete;
6

7 // default IKernelObject methods
8 optional<void const*> vcast(TypeId id) const override;
9 optional<void> deleteCap(Cap self, IDeleter& del) override;

10 void deleteObject(Tasklet* t, IResult<void>* r) override;
11 void invoke(Tasklet* t, Cap self, IInvocation* msg) override;
12

13 protected:
14 ...
15 friend struct protocol::Example;
16 Error printMessage(Tasklet* t, Cap self, IInvocation* msg);
17

18 protected:
19 IAsyncFree* _mem;
20 ...
21 };
22

23 class ExampleFactory : public FactoryBase
24 {
25 public:
26 static optional<ExampleObj*>
27 factory(CapEntry* dstEntry, CapEntry* memEntry, Cap memCap, IAllocator* mem);
28

29 Error factory(CapEntry* dstEntry, CapEntry* memEntry, Cap memCap,
30 IAllocator* mem, IInvocation*) const override {
31 return factory(dstEntry, memEntry, memCap, mem).state();
32 }
33 };

Listing 13: Kernel Object’s Declaration

1 Error ExampleObj::printMessage(Tasklet*, Cap self, IInvocation* msg)
2 {
3 mlogex.info("invoke printMessage", DVAR(this), DVAR(self), DVAR(msg));
4 auto data = msg->getMessage()->cast<protocol::Example::PrintMessage>();
5 mlogex.error(mlog::DebugString(data->message, data->bytes));
6 return Error::SUCCESS;
7 }

Listing 14: Kernel Object’s Method Implementation
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As a last point, note the ExampleFactory class in
kernel/objects/example/objects/Example.hh, which provides a standard ob-
ject factory for the creation process of that KO. That factory inherits a generic
method factory(...) (line 29), which is automatically invoked during the object
creation process and redirects to a custom static factory method implement-
ation (in line 27). There the developer has to implement the specific object
creation procedure by the factory. A standard implementation can be found in
kernel/objects/example/objects/Example.cc:

1 optional<ExampleObj*>
2 ExampleFactory::factory(CapEntry* dstEntry, CapEntry* memEntry, Cap memCap,
3 IAllocator* mem)
4 {
5 auto obj = mem->create<ExampleObj>();
6 if (!obj) return obj.state();
7 Cap cap(*obj);
8 auto res = cap::inherit(*memEntry, *dstEntry, memCap, cap);
9 if (!res) {

10 mem->free(*obj); // mem->release(obj) goes throug IKernelObject deletion
mechanism

11 return res.state();
12 }
13 return *obj;
14 }

Listing 15: Kernel Object’s Method Implementation

The standard factory implementation basically creates the object with the help of a
special memory allocator (line 5) and registers the new object application’s capability
space (line 8). For more information please refer to the inline documentation in the
source code.
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