ThOS

Férderkennzeichen: 01I1H130003
Vorhabensbezeichnung: MyThOS
Modulares Betriebssystem flr Massiv Parallele Anwendungen

MyThOS D3.3
Softwareentwicklungsplan

Stefan Bonfert, Vladimir Nikolov, Robert Kuban, Randolf Rotta

28. Marz 2017

Zusammenfassung

Dieses Dokument umfasst den Strategieplan fir die Weiterentwicklung des
Prototypen und Anleitungen fur Systementwickler. Es fasst somit niitzliche und
geplante Erweiterungen des bestehenden Kernels zusammen. Dazu gehoren zum
Beispiel Verbesserungen bei der Fehler- und Performanceanalyse, Schnittstellen
zur Konfiguration der Interruptbehandlung und Capability Transfers zwischen
Kommunikationsportalen.

Das diesem Bericht zugrunde liegende Vorhaben wurde mit Mitteln des Bundesministerium fur
Bildung und Forschung unter dem Forderkennzeichen 01IH13003 gefordert. Die Verantwortung fiir
den Inhalt dieser Veroffentlichung liegt bei den Autoren.

MyThOS D3.3 Softwareentwicklungsplan Th OS

Inhaltsverzeichnis

1 Introduction

N

2 Strategy for further Development

2.1 Capability Transfer e
2.2 Image-based Debugging Facilities

2.2.1 Doorbell Interrupts and User-Level Interrupt Handling
2.3 Exploiting Hardware Transactional Memory.
2.4 Conservative Sleeping
2.5 Sleeping through MWAIT
2.6 Adapt Tracing for Tasklet Queues and Synchronisation Monitors

Ul UL U W W

1 Introduction

This document recaps a strategy plan for the further development of the MyThOS
operating system and its prototype. It summarizes a bunch of useful and nice-to-
have improvements, like for example for error and performance analysis, interfaces
for the configuration of the interrupt handling and capability transfers between
communication portals. It also outlines the development strategy of the partners in
terms of future academic activities and projects, that will help to sustainably improve
the system.

In the second phase of the project the MyThOS system and its architecture were
completely redesigned and re-implemented from scratch. The lessons learned from
the previous version helped us to streamline the kernel into a more consistent
shape and operation. Logical and functional gaps are not pushed up anymore to the
responsibility of the application developers, but were filled and closed with clear
definitions, requirements and architectural elements of the system. In the course of
that development various nice-to-have functionalities were left aside or postponed, as
the focus was initially set on the development of the new version of the base kernel.
Such functionalities and features are presented and discussed later in Section 2.

MyThOS is planned to serve as a basis for various further research projects and
initiatives. Thereby, aspects like different scheduling policies, task models, resource
management strategies (CPU, energy, network), fault tolerance and support for time-
critical applications will be investigated. The fields of application and research range

MyThOS D3.3 Softwareentwicklungsplan ; Th OS

from heterogeneous and embedded systems, over large scale infrastructures to time-
critical and real-time applications and systems. Concrete developments and projects
as well as cooperations with industrial and academic partners will be announced and
referenced on MyThOS’s website (https://manythreads.github.io/mythos/).

Furthermore, we aim to extend the code-base with further (example) applications
and to port the system to different hardware architectures (e.g. ARM, PPC, particular
Microcontrollers, etc). Also modules for physical storage, network communication,
graphical display and device drivers for further peripherial hardware are still on the
roadmap.

Besides this, theoretical and practical aspects of MyThOS are already and will be
further integrated in various lectures, seminars, student thesis and labs at the Ulm
University and at the BTU Cottbus.

MyThOS was also published on GitHub with the aim to build an open source
developer community and to provide a well-known platform for further developments
and improvements.

In the following Section 2 we now summarize some of the directions for technical
improvements of the kernel.

2 Strategy for further Development

2.1 Capability Transfer

Capability transfer and capability unwrapping in inter-process calls are not necessary
for the applications targeted by MyThOS. However, they promise to simplify the
interaction between unrelated application without a common supervisor.

In order to support the future implementation of such transfers, the invocation
buffer format mirrors the sel.4 message format and reserves the necessary space.
In order to support a capability transfer, a portal implementation would read the
desired target capability address from the receiver’s invocation buffer, look up the
respective entry in the receiver’s capability space, and insert a reference capability
there.

https://manythreads.github.io/mythos/

MyThOS D3.3 Softwareentwicklungsplan Th OS

2.2 Image-based Debugging Facilities

Because the system memory in MyThOS is just 4GiB large, it is feasible to create
an image of the whole system memory by reading it from the host over PCle. Host
access to the coprocessor memory is cache coherent if the host-side caching is
disabled. Although it is possible create a kernel image without further kernel
support, concurrent changes to the kernel memory can easily lead to an inconsistent
image and interesting details about the state of each hardware thread are hidden in
their registers.

Two approaches can be implemented in order to obtain a consistent kernel image:
Snapshot Images capture a consistence state by issuing a non-maskable interrupt
(NMI), which dumps the processor state into each thread’s NMI stack and, and
then, busy waits in the interrupt handler until the image is captured. In contrast, a
Checkpoint Image is created by using a interrupt to force all threads into the kernel,
but instead of waiting in the NMI handler, all threads wait before the next Tasklet is
executed. This allows to create a kernel image that is easier to analyse because all
transactions and critical sections were completed.

2.2.1 Doorbell Interrupts and User-Level Interrupt Handling

The Intel Xeon Phi Processor has a doorbell interrupt, which can be triggered from
the host software in order to wakeup the sleeping processor or interrupt its current
activity in order to handle urgent requests. This mechanism is based on configuration
registers in the processor’s PCle MMIO space and the XeonPhy’s IOMMU. The
respective configuration can be added through a KNC-specific source code module.
One imminent application would be the interrupt broadcast for debugging purposes.

The present interrupt handling in MyThOS is sufficient to handle traps and inter-
rupts inside the kernel but is not extensible. A useful improvement would be the
implementation of user-level interrupt handling. The basic idea is to represent inter-
rupt gates as kernel objects and triggered interrupts send a message or notification
to a portal or execution context.

MyThOS D3.3 Softwareentwicklungsplan Th OS

2.3 Exploiting Hardware Transactional Memory

Hardware Transactional Memory such as Intel’s TSX extension can speed up the exe-
cution by enabling lock elision and much simpler non-blocking algorithms. Previous
related work about transactional memory in microkernels [SLEV15, Fuc14] focused
on the latency of the IPC path. The results were disappointing because one or two
atomic exchange or CAS operations are difficult to beat.

MyThOS contains quite a lot non-blocking algorithms, especially for double-linked
queues of pending messages and the resource inheritance tree. These can be
replaced by hardware transactional memory in order to reduce complexity and busy
waiting. Very likely, TSX would not speed up the serialisation monitors and the tasklet
queue.

2.4 Conservative Sleeping

When there is no work to do, a hardware thread should switch into a sleep state
in order to minimize energy consumption and to lend its thermal budget to other
cores. Currently, a hardware thread in MyThOS starts sleeping as soon as there are
no more executable Tasklets and Execution Contexts (application threads). However,
this is not optimal because waking up from a sleep state requires an interrupt to
be send by another thread, which imposes a latency penalty. Entering and exiting
deeper sleep modes also adds a considerable overhead.

A possible solution to this problem is introducing an active waiting phase, which
resembles the pause phase for mutexes first introduced by Ousterhood. Heuristics
might be used to find a tradeoff between active waiting phase length, hence energy
consumption, and the latency penalty of waking up from a sleep state. MyThOS can
support the development of such heuristics by providing diagnostic data like active
waiting time or sleeping phase length.

2.5 Sleeping through MWAIT

Many x86 Prozessors, except the Intel XeonPhi Knight Corner, support a more effi-
cient sleep&wakeup mechanism for the hardware threads. It is based on monitoring
a cache line for access by other hardware threads with the MONITOR instruction. Then
the thread can sleep with MWAIT and is woken up whenever the monitored line is
modified or evicted from the thread’s cache.

MyThOS D3.3 Softwareentwicklungsplan ; Th OS

The benefit of this approach is, that client threads that send a Tasklet do not need
to check whether they have to send an IPI interrupt. The sleeping thread does not
need to go through the interrupt entry routine when waking up. In MyThOS this
would allow to leave out the release of the thread’s Tasklet queue prior to sleeping.

2.6 Adapt Tracing for Tasklet Queues and Synchronisation Monitors

The previous implementation of MyThOS used fixed-size Ringbuffers for the exchange
of Tasklets between hardware threads. In addition, Tasklets were allowed to enter
multiple queues at the same time and were allocated dynamically. This introduced
interesting challenges for the global reconstruction of thread-local traces.

In contrast, the present design is much simpler because all Tasklets have to follow
a request-response cycle between kernel objects. This allows to simplify the trace
recording and reconstruction. The port of the trace subsystem to the new design is
still pending.

References

[Fucl14] Raphael Fuchs. Hardware transactional memory and message passing.
2014.

[SLEV15] Till Smejkal, Adam Lackorzynski, Benjamin Engel, and Marcus Volp. Trans-
actional IPC in Fiasco.OC. OSPERT 2015, page 19, 2015.

	Introduction
	Strategy for further Development
	Capability Transfer
	Image-based Debugging Facilities
	Doorbell Interrupts and User-Level Interrupt Handling

	Exploiting Hardware Transactional Memory
	Conservative Sleeping
	Sleeping through MWAIT
	Adapt Tracing for Tasklet Queues and Synchronisation Monitors

