
Förderkennzeichen: 01IH130003
Vorhabensbezeichnung: MyThOS

Modulares Betriebssystem für Massiv Parallele Anwendungen

MyThOS D2.3 Architekturplan

Stefan Bonfert, Vladimir Nikolov, Robert Kuban, Randolf Rotta

28. März 2017

Zusammenfassung

Dieses Dokument beschreibt notwendige sowie potentiell interessante Rich-
tungen zur Weiterentwicklung der MyThOS Softwarearchitektur im Sinne einer
langfristigen Weiterentwicklung und Nutzung. Abschnitt 1 diskuttiert mögliche
Verbesserungen der Performance. Der nachfolgende Abschnitt 2 stellt Verbesse-
rungsmöglichkeiten für die Benutzbarkeit vor. Der letzte Abschnitt 3 beschreibt
mögliche Vereinfachungen der Architektur.

Das diesem Bericht zugrunde liegende Vorhaben wurde mit Mitteln des Bundesministerium für
Bildung und Forschung unter dem Förderkennzeichen 01IH13003 gefördert. Die Verantwortung für
den Inhalt dieser Veröffentlichung liegt bei den Autoren.

1

MyThOS D2.3 Architekturplan

Inhaltsverzeichnis

1 Potential Performance Improvements 2
1.1 Page Maps: ASID versus Embedded Capabilities 2
1.2 Low-Overhead TLB invalidation . 3
1.3 Interactions between Portals and Execution Contexts 5
1.4 Lightweight Execution Contexts . 6
1.5 Latency-Aware Placement of Synchronisation Variables 6
1.6 Coarse-Grained Scheduling Contexts . 7

2 Usability Improvements 7
2.1 User-Space Runtime Environment . 7
2.2 Futex Support or Notifications . 8
2.3 (Clustered) Multikernel . 8
2.4 Easier Memory Sharing between Applications 9

3 Architecture Simplification 10
3.1 Asynchronous Revokation . 10
3.2 Unordered Deletion Lists . 10
3.3 Big Kernel Lock . 11

1 Potential Performance Improvements

1.1 Page Maps: ASID versus Embedded Capabilities

When mapping a frame or a page map into a page map, some bookkeeping is neces-
sary in order to be able to clean up the mapping when the mapped frame or mapped
page map gets deleted. This is also necessary when replacing a previous mapping.
Shared memory between address spaces is usually implemented by mapping the
same frame to multiple pages. Hence, a one-to-many relation with quick queries in
both directions has to be maintained.

MyThOS page maps combine the processor-specific page table with an embedded
capability map. Each page table entry has a respective capability entry. When
mapping a frame, a reference capability to the mapped frame is stored in this entry.
This capability is a child of the original frame in the resource inheritance tree. When
replacing the mapping, the reference capability is removed from the tree. When

2

MyThOS D2.3 Architekturplan

deleting the frame, all children in the tree are revoked, which informs the page map
to undo the mapping. The same applies for mapping lower-level page maps.

This approach enables shared frames as well as shared page maps for partially
shared address spaces. However, each page map takes 3x the size of the actual page
table, which is a waste of space for sparsely filled address spaces.

The seL4 kernel uses a more compact strategy: When mapping a frame, the
used capability is replaced with a mapped-frame capability directly in its current
capability entry. The new capability contains an address space identifier (ASID) and
the logical address of the page. The root supervisor manages the system-wide ASID
pool, which maps from the identifiers to the root page map of the address space.
When deleting the frame, this structure allows to clean up the affected address
spaces. Unfortunately, cleaning up this capability entry when removing page maps
or deleting whole address spaces is not possible. The mapped-frame capabilities are
not deleted, which is no problem as long as the ASID is not reused.

Advantages are the low overhead (no insert/removal in the resource tree needed),
the easy integration of process context identifiers (PCIDs) for the TLB, and easier
global TLB invalidation (ASID can track the hardware threads). On the downside,
partially shared address spaces by sharing page tables is not possible and larger
capability entries are required for 64bit address spaces.

1.2 Low-Overhead TLB invalidation

On multi-threaded architectures, the kernel has to protect itself against exploits of
the Translation Lookaside Buffer (TLB) caches. For example, a frame of physical
memory can be used as level-2 page map. On processors with TLB cache, the address
of this page map would be stored in the TLB cache in order to speed up future table
walks in the same 2MiB range. Now, a malicious application could delete the page
map and map the same frame as normal memory into its address space. Because the
frame’s address is still in the TLB cache it will be used as page map for table walks.
But now, the application can write arbitrary address translation into the fake page
map and, hence, access any memory. In consequence, either the kernel or a trusted
supervisor has to implement the necessary global TLB invalidation before reusing
the memory of page maps.

As a minimal precaution, the kernel broadcasts an address space reset whenever
a level-4 map is deleted. This changes the address space (CR3 register) back to

3

MyThOS D2.3 Architekturplan

the kernel’s internal address space on all the hardware threads that were using the
deleted page map. The broadcast is implemented similar to the deletion broadcast
for kernel objects. It interrupts all places that currently use the affected address
space by sending them a Tasklet. In order to skip unaffected places, each place
stores the currently used CR3 value in a variable that is readable from the other
threads.

The overhead of this approach comes from reading 240 possibly remote cache lines
for the current CR3 value plus one asynchronous request for each affected hardware
thread. Because of the ring-structured broadcast, the effort is distributed over
the affected threads. This ensures good throughput in widely-used address spaces.
Instead of storing the currently used CR3 value in each place, each level-4 map could
use a bitmap to mark the hardware threads that currently use the address space.
Reading these 30 bytes is much faster, but adds larger overhead to loading and
unloading of an address space. The best approach likely depends on the application
scenario.

Many multi-threaded operating system kernels use interrupt broadcasts in order
to implement the TLB invalidation. This makes the latency of individual invalidations
more predictable but requires interrupts from ground up. In contrast, MyThOS
streams a large number of invalidation tasks through the system and uses interrupts
just once for the first preemption of affected hardware threads. While increasing
the latency of invalidation broadcasts in widely-used address spaces, this approach
reduces the overhead per invalidation and increases the throughput over a large
number of simultaneous invalidations.

An obvious step would be to disallow shared page maps, that is, each page map is
mapped at most once. This allows to store the pointer to the higher level page map
inside each page map object and quickly walk up to the address space through this
chain. Then, all kinds of TLB invalidation tasks can be handed to the single affected
address space and from there broadcasted to all affected hardware threads.

However, this restriction can be circumvented: Each page map stores its original
capability in an own capability entry and all mapped page map capabilities are a child
of this entry. Hence, the higher-level page maps can be enumerated by inspection of
the resource inheritance tree. This can be used for all page maps that are mapped in
more than one maps.

4

MyThOS D2.3 Architekturplan

1.3 Interactions between Portals and Execution Contexts

From the application’s perspective, communication with other threads and with
the kernel objects is achieved through capability invocations through portals. Each
portal combines the necessary resources to issue an asynchronous request message
and wait for the response message. In order to be able to receive messages from
other threads and exception messages from the kernel, portals can also be used to
receive a request and answer with a response.

The most important ingredient for the capability invocations is the invocation
buffer that holds the request and response message data. It is the only regularly
shared data structure between user-space and kernel. In order to avoid accessing
user-space memory, the invocation buffers reside inside frames of physical memory
such that the kernel can access the contents directly in its own address space. Each
invocation buffer can either hold the request or the response message from a single
capability invocation and cannot be used for multiple invocations at the same time.
Hence, the portal kernel object manages the state of a single invocation buffer.

The current portal design in MyThOS combines the functionality for sending and
for receiving requests in one kernel objects. However, portals would be used just
for one of these two purposes and many receiver portals could easily share a single
invocation buffer. In order to achieve a high throughput, multiple portals are needed
and a mechanism to route incoming requests to free portals. Thus, it is a good idea
to decrease the management overhead.

A significant architectural improvement would be the differentiation between
Portals for outgoing requests and Endpoints for incoming requests. Then, a large
number of endpoints could share a smaller set of invocation buffers. The implement-
ation of portals would be simpler, too. The current MyThOS designs aims at multiple
portals per thread. In contrast, Barrelfish uses multiple endpoints with separate
buffers whereas, in seL4, multiple endpoints share the thread’s single buffer.

In order to achieve higher throughput, for example for central supervisor threads,
incoming requests should be automatically routed to a free buffer. In order to
facilitate parallel processing, multiple threads should be able to receive messages
via the same set of endpoints (and buffers). That is, the requests could be distributed
over a group of (ideally nearby) supervisor threads without the need to keep a
dedicated thread or portal available for every client or hardware thread.

On the sending side, routing incoming system calls to specific or unused hardware
threads would be a useful architectural extension. This is useful, for example, to

5

MyThOS D2.3 Architekturplan

offload long-running actions such as the capability revocation. Also, the initialisation
of application threads could be easily offloaded to the target hardware thread. In
current designs (Barrelfish, MyThOS), the supervisor or application would have to
keep respective supervisor threads available and notify them about their asynchron-
ous task. This separation of system activities from application threads is similar to
other core separation approaches in the Linux world [RLM13, SFL+11].

1.4 Lightweight Execution Contexts

Execution Contexts represent user-level threads. They combine an address space, a
capability space and communication portals/endpoints. In addition, they are bound
to a scheduling context, which represents the hardware thread that will execute
the user-level thread, and an exception handler endpoint, which is supplied by
the supervisor. The communication portals and endpoints again are bound to the
execution context for message notifications and frames for the invocation buffers.

Managing all these references and bindings to other kernel objects adds overhead
to the startup and teardown of execution contexts. Many application scenarios feature
a large number of relatively short-lived, very simple execution contexts. For example,
they share address spaces, capability spaces and a fixed set of communication
channels. Hence, this exact combination could be combined into a specialised
execution context variant. One example are the codelets used by OctoPOS to simplify
and speed up X10 activities [MBZ+15]. The Basslets in Barrelfish follow similar
ideas [GZAR16].

1.5 Latency-Aware Placement of Synchronisation Variables

Many-core architectures such as the Intel XeonPhi Knights Corner employ address
interleaving over cache coherence directories in addition to interleaving over memory
controllers. This helps to increase the throughput of the cache coherence protocol
but introduces quite large latency variations for inter-core synchronisation.

The mapping of cache lines to coherence directories and the distance between
cores and directories is quite well known. Thereby, synchronisation variables such
as Tasklets, queues, locks, and reference counters could be placed into nearby
directories by choosing respective cache lines.

This would be easy for statically allocated kernel objects because just a small
known number of cache lines is needed. For the dynamic allocation of kernel objects,

6

MyThOS D2.3 Architekturplan

a pool of appropriately placed cache lines is needed inside each Untyped Memory.
Very often, this pool would be sparsely used and, therefore, a recursive scheme that
uses the parent’s pool first could be integrated. One challenge is the design of an
appropriate allocation/deallocation interface for this pool.

1.6 Coarse-Grained Scheduling Contexts

Many-core processors provide a large number of cores and an even larger number of
hardware threads. At the same time it is necessary to split the work into smaller tasks
and distribute them over multiple threads in order attain the processor’s throughput.
Distributing the application’s and system’s tasks leads to an increased overhead.
One aspect is the effort to choose a suitable hardware thread for the execution of the
task.

Currently, MyThOS leaves the scheduling of application threads (Execution Con-
texts) to hardware threads (Scheduling Contexts) to the application or supervisor.
Each application thread has to be bound to an hardware thread and a simple cooper-
ative round-robin scheduler is used on each.

Managing the placement on the level of individual hardware threads is a tad too
fine-grained because the differences between the threads of a core are insignificant.
Instead, whole cores should be assignable as scheduling context. Then, the core’s
scheduler (somehow) distributes the ready application threads on the available
hardware threads. The design can exploit the very fast synchronisation inside each
core because of the shared caches.

2 Usability Improvements

2.1 User-Space Runtime Environment

The present implementation misses a usable runtime environment on the user-space
side. Applications and supervisors have to use individual system calls (capability
invocations to kernel objects) in order to set up capability and address spaces and
create worker threads. A lot of the intermediate steps can be hidden in a system
library similar to the seL4re.

7

MyThOS D2.3 Architekturplan

2.2 Futex Support or Notifications

User-level critical sections and object monitors require fast mutex and semaphore
implementations. These can either employ busy waiting, which does not hand over
the compute time to other threads, or use a wait-signalling mechanism provided by
the operating system, which adds the system call overhead. In practise, many critical
sections are entered and left without competing threads. In these cases, the help of
the kernel would not be necessary.

The Futex mechanism in Linux enables the implementation of fast user-level
mutexes and semaphores that only use system calls when necessary, that is to
actually put a thread to sleep or to wake up a sleeping thread [Dre09, FRK02].
A similar mechanism would be very helpful for parallel MyThOS applications or
their runtime environments. The seL4 kernel seems to circumvent the complexity,
by providing a low-overhead notification mechanism based on bitmask wait-sets.
The futex implementation of the magenta-kernel might be interesting because it is
restricted to synchronisation within a single address space1.

2.3 (Clustered) Multikernel

The idea of multi-kernels like Barrelfish is, that the kernel on each hardware thread
operates in isolation. The benefits are that no synchronisation is needed within each
kernel and that heterogeneous kernels can be combined. Sharing is implemented
and coordinated by a user-level supervisor, which uses message passing between the
threads.

The seL4 project proposed a clustered multi-kernel approach that groups a small
number of nearby hardware threads together. Inside each cluster, a big kernel lock
is used and coordination between clusters works like in multi-kernels. The benefit is,
that the locally shared caches are more effective while the number of messages for
global coordination is reduced.

Booting MyThOS as a clustered multi-kernel is relatively easy. The basic idea is
to create disjoint untyped memory objects and separate supervisor processes per
cluster. This task can be left to the initial supervisor [ZGKR14]. It has to create initial
exclusive kernel objects for the other clusters.

1https://github.com/fuchsia-mirror/magenta/blob/master/docs/futex.md

8

https://github.com/fuchsia-mirror/magenta/blob/master/docs/futex.md

MyThOS D2.3 Architekturplan

The actual challenge of multi-kernels is the distributed rights management. In
order to support multi-threaded applications, access rights need to be transferred
and shared between clusters. To a large degree, replication and update broadcasts
solve this requirement. Because multiple threads can try to manipulate the same
access right simultaneously, a transaction or consensus model is needed. Barrelfish
allows the sharing of some kernel objects without replication, for example to share
whole address spaces efficiently. This is achieved by replicating just the access right
capabilities. Each capability does not just point to a kernel object, they also contain a
32bit context identifier as home of the kernel object and a few additional flags for the
replication state. When access rights are transferred between clusters, the receiver
has to find the right position in its resource inheritance tree. This takes linear time
because of the prefix-order encoding of the tree.

In retrospective, a lot of overhead is just shifted from the kernel into the supervisor
without simplifying the management. As long as low-overhead is more important
than support for complex heterogeneous hardware nodes, the multi-kernel approach
might not be worth the effort.

2.4 Easier Memory Sharing between Applications

Shared memory allows applications to exchange large volumes of data without the
overhead of kernel-based communication channels. The present architecture sup-
ports two ways to establish shared memory. Either a supervisor maps a physical
memory frame into both address spaces, or one application transfers a frame capab-
ility to the other, which maps the frame to an appropriate logical page. In both cases
additional coordination is necessary in order to negotiate which memory is mapped
to which address.

The nested address space model of Fiasco, Nova and similar L4-style kernels
provides a much more straightforward interface. One application provides the shared
memory as a source window in its logical address space and the other application
provides a destination window in its own logical address space. The kernel than
maps the frames from the source into the destination window. The benefit is, that
large windows can be mapped with a single system call and the windows do not
have to be aligned on large pages. In addition, both applications do not need to be
bothered with the management of individual frames.

9

MyThOS D2.3 Architekturplan

3 Architecture Simplification

3.1 Asynchronous Revokation

The deletion of kernel objects is implemented in multiple phases in order to ensure
the correct cleanup of references and prevent any concurrent access to the object
during its final deletion. The first phase is the revocation of all access rights related
to the object. This is achieved by removing children capability entries from the
resource inheritance tree.

In the present design, the affected kernel object (usually a capability holder)
is informed about the revocation through a call to the synchronous deleteCap()
method. In consequence, this synchronous call is executed concurrently to the
regular asynchronous calls. That is, although normal operations are protected by the
object’s monitor, references to other kernel objects can disappear at any time. Thus,
all code that uses references to other kernel objects has to take precautions when
reading these references. Most of the necessary precautions are implemented in the
CapRef helper.

Instead of the synchronous deleteCap() method, this call could be made asyn-
chronous. This likely slows down the revocation but simplifies to kernel objects
and enables asynchronous cleanup activities inside of deleteCap(). Probably it is
necessary to redesign the interaction of deleteCap() with the object’s monitor.

3.2 Unordered Deletion Lists

The final phase of the deletion mechanism is based on a list of objects that are ready
for final deletion. In the present design, this deletion list is processed in FIFO order
to delete child objects before the objects that provide their memory resources. The
reason is, that the task sent to the object’s deletion monitor is delayed infinitely
until the reference counter reached zero. This design does not easily allow parallel
revocation and the offloading of object deletion because the required deletion order
is difficult to maintain.

Two observations can be exploited to simplify the final deletion: First, objects that
were allocated from different Untyped Memory objects can be deleted independently.
Thus, a separate deletion list per untyped memory can be used. Each object has to
know its origin memory anyway. Waiting for the actual deletion can be deferred until

10

MyThOS D2.3 Architekturplan

the memory is actually reused, which leaves more offload-able tasks for background
processing.

Second, the asynchronous deletion task does not need to be sent into the blue.
Instead, the object’s reference counter can be queried in order to ensure immediate
deletion. When the next object on the deletion list still has pending references, it can
be skipped and revisited later. Likewise, any object on a deletion list knows about it
state already. When the reference counter reaches zero, the deletion list, that is the
untyped memory object, can be informed in order to proceed with the final deletion.

3.3 Big Kernel Lock

Micro-kernels like seL4 and Barrelfish use a big kernel lock to protect the kernel’s
data structures against inconsistencies and data races from concurrent write access.
The reasoning for single-threaded and small multi-threaded processors is, that most
kernel activities quickly finish anyway. Thus, finer grained locking would just add
overhead without improving the responsiveness.

Obviously the big kernel lock does not scale to many-core processors with a large
number of threads. However, getting rid of all the potential races and concurrency
inside the kernel allows for tremendous simplifications. A kernel variant based on a
big kernel lock would be very interesting for the comparison of scalability aspects
and for more efficient support of small processors.

Another interesting variation would be to just protect all resource tree operations,
like for example capability inheritance and revocation, with a big kernel lock. The
usual operations of kernel objects are protected by their object monitors anyway.
Instead of a lock based on busy waiting, the resource tree operations could be
offloaded as asynchronous task to a dedicated hardware thread.

References

[Dre09] Ulrich Drepper. Futexes are tricky. red hat. Inc., August, 2009.

[FRK02] Hubertus Franke, Rusty Russell, and Matthew Kirkwood. Fuss, futexes
and furwocks: Fast userlevel locking in linux. In Ottawa Linux Symposium,
page 479, 2002.

11

MyThOS D2.3 Architekturplan

[GZAR16] Jana Giceva, Gerd Zellweger, Gustavo Alonso, and Timothy Roscoe. Cus-
tomized OS support for data-processing. In Proceedings of the 12th
International Workshop on Data Management on New Hardware, DaMoN
2016, San Francisco, CA, USA, June 27, 2016, pages 2:1–2:6. ACM, 2016.

[MBZ+15] Manuel Mohr, Sebastian Buchwald, Andreas Zwinkau, Christoph Erhardt,
Benjamin Oechslein, Jens Schedel, and Daniel Lohmann. Cutting out the
middleman: Os-level support for x10 activities. In Proceedings of the
ACM SIGPLAN Workshop on X10, X10 2015, pages 13–18, New York, NY,
USA, 2015. ACM.

[RLM13] Eli Rosenthal, Edgar A León, and Adam T Moody. Mitigating system noise
with simultaneous multi-threading. Proceedings of SC13, poster session,
2013.

[SFL+11] S. Seelam, L. Fong, J. Lewars, J. Divirgilio, B. F. Veale, and K. Gildea.
Characterization of system services and their performance impact in
multi-core nodes. In Parallel Distributed Processing Symposium (IPDPS),
2011 IEEE International, pages 104–117, May 2011.

[ZGKR14] Gerd Zellweger, Simon Gerber, Kornilios Kourtis, and Timothy Roscoe.
Decoupling cores, kernels, and operating systems. In Proceedings of
the 11th USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI’14, pages 17–31, Berkeley, CA, USA, 2014. USENIX
Association.

12

	Potential Performance Improvements
	Page Maps: ASID versus Embedded Capabilities
	Low-Overhead TLB invalidation
	Interactions between Portals and Execution Contexts
	Lightweight Execution Contexts
	Latency-Aware Placement of Synchronisation Variables
	Coarse-Grained Scheduling Contexts

	Usability Improvements
	User-Space Runtime Environment
	Futex Support or Notifications
	(Clustered) Multikernel
	Easier Memory Sharing between Applications

	Architecture Simplification
	Asynchronous Revokation
	Unordered Deletion Lists
	Big Kernel Lock

