
Förderkennzeichen: 01IH130003
Vorhabensbezeichnung: MyThOS

Modulares Betriebssystem für Massiv Parallele Anwendungen

MyThOS D2.2 Gesamtarchitektur

Stefan Bonfert, Vladimir Nikolov, Robert Kuban, Randolf Rotta

28. März 2017

Zusammenfassung

Dieses Dokument gibt einen Überblick über die Gesamtarchitektur des My-
ThOS Betriebssystems, grundlegende Abstraktionen und dynamische Interak-
tionen. Es fasst die Ergebnisse des Arbeitspakets 2 zusammen und erweitert
die initiale Gesamtarchitektur aus Deliverable D2.1. Dieser Text basiert auf
Auszügen aus der Kerneldokumentation und ist daher pragmatisch auf Englisch
verfasst.

Das diesem Bericht zugrunde liegende Vorhaben wurde mit Mitteln des Bundesministerium für
Bildung und Forschung unter dem Förderkennzeichen 01IH13003 gefördert. Die Verantwortung für
den Inhalt dieser Veröffentlichung liegt bei den Autoren.

1

MyThOS D2.2 Gesamtarchitektur

Inhaltsverzeichnis

1 Zusammenfassung 3

2 Application View 6

3 Logical View 7
3.1 Layers and Object Types . 7
3.2 Core Abstractions: Kernel Objects . 9
3.3 Concurrency Control: Tasklets, Monitors, Lock-Free Algorithms 11
3.4 Dynamic Resource Management through Capabilities 14
3.5 Physical Memory and Address Space Management 15
3.6 User Access through Capability Spaces 17

4 Physical View 18
4.1 Locality Control via Monitors and Scheduling Contexts 18
4.2 Logical Address Spaces: Kernel versus User Space 19
4.3 Kernel-Space Memory Management: Physical Memory 20
4.4 Core-Local Memory: FS/GS Segment Base 21

5 Dynamic View 22
5.1 Error handling: IPC Messages to Supervisor 22
5.2 Concurrent Object Deallocation . 23
5.3 Credit-based Flow Control . 24
5.4 Boot Sequence . 25
5.5 Portal: States and Operations . 27

6 Implementation View 29
6.1 Compile- and Run-Time Dependency Injection 29
6.2 Source Code Composition: Code Modules 30
6.3 Interacting Asynchronous Objects via Tasklets 32
6.4 Managing the Resource Inheritance Tree 34
6.5 Operation Implementation in the Inheritance Tree 37
6.6 Invocation Handling . 39

2

MyThOS D2.2 Gesamtarchitektur

1 Zusammenfassung

Die Beschreibung der Gesamtarchitektur folgt dem 4+1 Sichtenmodell von Kruch-
ten [Kru95]. Abschnitt 2 rekapituliert die wichtigsten Anforderungen aus Anwen-
dungssicht. Die Logische Sicht (Abschnitt 3) beschreibt grundlegende Dienste und
Designelemente zur Umsetzung der funktionalen Anforderungen. Die Physische Sicht
(Abschnitt 4) beschreibt die Platzierung und Verknüpfung der Systemkomponenten
in Bezug auf Speicherbereiche, logische Addressräume und räumliche Verteilung
über Prozessoren, Kerne und Hardwarethreads. Die Dynamische Sicht (Abschnitt 5)
fokusiert sich auf die Interaktionen innerhalb des Kernels und mit Anwendungen,
sowie die Verwaltung der Lebenszyklen der Systemkomponenten. Die Entwicklungs-
sicht (Abschnitt 6) beschreibt grundlegende Umsetzungsaspekte in Hinblick auf die
nicht-funktionalen Anforderungen.

Anwendungssicht: Aus Anwendungssicht ist die Fokussierung auf Vielkern-
Prozessoren und hoch-dynamische Szenarien hervorzuheben. Daraus folgt zum Einen
der Anspruch möglichst guter Skalierbarkeit der Systemoperationen, das heißt der
parallele Durchsatz über viele gleichzeitig aktive Prozessorkerne ist wichtiger als
die Latenz einzelner Operationen in Isolation. Zum Anderen wird die dynamische
Verwaltung und Konfiguration von Anwendungsthreads und Schutzräumen sowie
die Kern-übergreifende Koordination durch parallele Laufzeitumgebungen und
(Cloud-)Supervisoren benötigt.

Logische Sicht: Die Softwarearchitektur besteht aus vier operativen Schichten:
Die Synchrone Schicht entspricht der programmiersprachlichen Ebene und besteht
aus gewöhnlichen Objekten mit synchronen Methodenaufrufen. Hier werden grund-
legende Hardwareschnittstellen und die Ausführungsumgebung für die höheren
Schichten bereitgestellt. Die Asynchrone Schicht definiert sich über einen Mechanis-
mus für asynchrone Methodenaufrufe. Diese ermöglichen die verzögerte Ausführung
zur Umsetzung von wechselseitigem Ausschluss sowie der Delegation zwischen Pro-
zessorkernen. In dieser Schicht sind die Interaktionen zwischen den Kernelobjekten
implementiert. Die Verwaltungsschicht setzt Zugriffsrechte von Anwendungen auf
Kernelobjekte, schwache Referenzen zwischen Kernelobjekten und die Verwaltung
der Speicherressourcen um. Hierfür wird ein Ressourcen-Vererbungsbaum in Kombi-
nation mit Objekt-Capabilities [MTS05] verwendet. Darüber liegt die Benutzerschicht
mit Anwendungen, Supervisoren und Systemdiensten.

3

MyThOS D2.2 Gesamtarchitektur

Als Schnittstelle zwischen Benutzerschicht und dem Betriebssystemkernel fungie-
ren Kernelobjekte orthogonal zu den Softwareschichten. Diese stellen Abstraktionen
für Kontrollflüsse, Addressräume, Rechteräume, Hardwarethreads und Kommuni-
kationsportale zur Verfügung. Ein wesentlicher Aspekt ist, dass alle Kernelobjekte
explizit über Systemaufrufe aus Speicherpools (Untyped Memory Kernelobjekte)
erzeugt werden und ansonsten keine dynamische Speicherverwaltung im Kernel
notwendig ist. Durch die Partitionierung dieser Speicherpools liegt die Parallelisie-
rung der Systemoperationen sowie die Zuweisung von Resourcen vollständig in der
Kontrolle der Benutzerschicht.

Physische Sicht: Die räumliche Positionierung von Aktivitäten erfolgt auf der Be-
nutzerschicht und der Asynchronen Schicht. Die Benutzerschicht hat Zugriff auf
Kernelobjekte (Scheduling Context) die die jeweiligen Hardwarethreads bzw. Pro-
zessorkerne repräsentieren. Kontrollflüsse werden explizit einem solchen Kontext
zugeordnet, was der Threadaffinity in anderen Betriebssystemen enstspricht. Über
Kommunikationkanäle können Anwendungen und Supervisor mit gemeinsamen Sys-
temdiensten und mit externen Diensten kommunizieren. Zu den externen Diensten
gehört zum Beispiel das Lesen und Schreiben von Dateien.

Auf der Asynchronen Schicht besitzt jeder Hardwarethread einen lokalen FIFO
Scheduler für die verzögerte Ausführung der asynchronen Methodenaufrufe. Ker-
nelobjekte werden entweder bei ihrer Erzeugung an einen Scheduler gebunden,
was den Ausführungsort aller ihrer Aktivitäten statisch festlegt, oder der Ort wird
über einen Delegationsmechanismus dynamisch ausgewählt, wobei wechselseitiger
Ausschluss auf dem Objekt gewährleistet bleibt.

Die logischen Adressräume sind unterteilt in einen festen, gemeinsamen Kernel
Space und einen konfigurierbaren User Space für die Benutzerthreads. Die Adressab-
bildungen für den Kernel Space sind in das Image eingebettet, um direkt nach dem
Start des Prozessors zur Verfügung zu stehen und werden später nur minimal verän-
dert. Im Kernel Space gibt es einen Bereich in den die ersten 4GiB des physischen
Addressraums direkt eingeblendet sind. Dieser Bereich wird für alle späteren Kernel-
objekte verwendet und die Größe ist so gewählt, dass selbst auf 64-bit Systemen mit
kompakten 32-bit Zeigern gearbeitet werden kann.

Dynamische Sicht: Um eine gute parallele Skalierbarkeit zu ermöglichen er-
scheint es sinnvoll, dass mehrere Anwendungsthreads nebenläufig Systemaufrufe

4

MyThOS D2.2 Gesamtarchitektur

durchführen können. Aufgrund der sehr beschränkten Speicherressourcen sollten
durchsatzunkritische Kernelobjekte gemeinsam benutzt werden, um den Replizie-
rungsoverhead zu vermeiden. Dafür müssen Zugriffe auf gemeinsam genutzte Ker-
nelobjekte koordiniert und synchronisiert werden. Tasklet-basierte Monitore in den
Kernelobjekten ordnen die Ausführung asynchroner Methodenaufrufe um wechselsei-
tigen Auschluss sicher zu stellen. Durch ineinander verschachtelte asynchrone Auf-
rufe sind prinzipiell Deadlocks möglich, da dies verschachteltem Locking entspricht.
Dem kann nur auf architektureller Ebene durch asymmetrische Rollenverteilung
zwischen den Kernelobjekten begegnet werden.

Ein weiterer wichtiger Aspekt ist die koordinierte Löschung von Kernelobjekten.
Dies geschieht in drei Phasen. Zuerst werden über den Ressourcen-Vererbungsbaum
alle Langzeit-Referenzen (beschrieben durch Objekt Capabilities) zurückgezogen.
Dann wird mittels eines asychronen Broadcasts über alle gerade im Kernel aktiven
Threads sichergestellt, dass keine unsichtbaren temporären Referenzen in Regis-
tern u.ä.übrig sind. Anschließend wird die finale Löschung des Objekts asynchron
verzögert, bis der Referenzzähler für temporäre Referenzen Null erreicht hat.

Entwicklungssicht: Um eine modular konfigurierbare Systemarchitekur zu errei-
chen, wird das Prinzip der Dependency Injection auf mehreren Ebenen eingesetzt.
Anstelle von Anfragen an zentrale Verzeichnisse oder der Speicherallokation aus
zentralen Pools bekommen Kernelobjekte alle notwendigen Abhängigkeiten bei ihrer
Erzeugung bzw. später über Konfigurationsmethoden von außen mitgeteilt. Das Selbe
gilt für die statische Auswahl von Implementierungsvarianten über C++ Template
Mechanismen. Auf der Ebene des Quellcodes entspricht dieses Prinzip der Kompo-
sition der finalen Software aus Code-Modulen. Abhängigkeiten werden durch die
Verwendung entsprechender Header-Dateien deklariert und mit Hilfe des mcConf
Werkzeugs wird eine passende Implementierung aus der Modulsammlung ausge-
wählt. Im Vergleich zu den Template-basierten Mechanismen ist dies flexibler und
resultiert in besser lesbarem Code.

Der Ressourcen Vererbungsbaum wird lediglich als doppelt verkettete Liste der
Knoten in Prefix-Ordnung gespeichert. Dank der 32-bit Zeiger in den 4GiB Kernel-
speicher werden so nur 16 Byte pro Eintrag benötigt (entspricht zwei 64-bit Zeigern),
um Vorgänger, Nachfolger, Zielobjekt und Metadaten wie Zugriffsrechte zu repräsen-
tieren. Abgeleitete Referenzen werden direkt hinter der ursprünglichen Referenz

5

MyThOS D2.2 Gesamtarchitektur

eingefügt. Zum Zurückziehen von Zugriffsrechten wird der betroffene Teilbaum mit-
tels eines Vaterschaftstests traversiert. Die Implementierung der Baumoperationen
ermöglicht voll nebenläufige Aktivitäten auf voneinander unabhängigen Teilbäumen.

2 Application View

The target application domain of MyThOS is dynamic and elastic high-throughput
parallel computing applications on many-core processors. For example, complex
multi-physics simulation codes exhibit multiple coupled applications operating in
turns and in parallel on shared data. Invasive computing [THH+11, OSK+11] tackles
the difficult load balancing by trading cores dynamically between the individual
applications. Similarly, new applications in big data, deep learning, and the internet
of things raise the need for elastic compute clouds [RKZB11]. In addition to the
dynamic assignment of cores to compute tasks, these scenarios require effective
isolation and supervised communication between third-party compute codes.

The requirements from the application’s viewpoint divide into three general types
of user-space activities: actual applications that perform computations, supervisors
that globally coordinate between the applications, and basic system services that
provide a shared infrastructure. The supervisors require mechanisms to exert control
over applications such as assigning and revoking physical memory, storage in general,
compute cores, and communication channels. This includes the ability to preempt
and migrate application threads as well as to intercept protection violations and
similar events. In this way, policies such as the mapping of application threads to
physical cores and invasive computing [THH+11] can be implemented. Beyond this,
the three types share requirements with respect to the management of threads,
address spaces, shared memory, and communication.

Application threads provide logical control flows that are scheduled for execution by
the operating system and operate in an application-specific environment. Interfaces
are needed to create/delete and suspend/wakeup application threads. The thread’s
execution environment is composed of a logical address space, thread-specific data
(stack, basic communication buffers, thread-local data) inside this address space
and access rights to system services and communication channels. Hence, an
interface is needed to map actual memory into these address spaces and configure
the processor’s support for thread-local data. On many-core processors, an additional
core-local storage relative to physical hardware threads seems useful.

6

MyThOS D2.2 Gesamtarchitektur

Basic communication support by the OS kernel is needed for inter-process com-
munication (IPC) between application, supervisors, and system services, e.g., to
communicate requests and set up high-level communication. If system services are
partially implemented by kernel objects instead of user-space threads, a uniform
interface is needed to hide the implementation-specific differences. High-volume
data transfers are usually facilitated via shared memory, which requires means to
setup shared memory across address spaces. In this context, asynchronous and
optionally preemptive notification mechanisms are useful in order to avoid busy
polling on shared message buffers. The actual communication between application
threads is up to the application’s parallel programming runtime.

3 Logical View

This section describes the logical view, which consist of common services, mechan-
isms, and design elements that fulfill the functional requirements of the system.

From the application’s point of view, abstractions for communication with the
operating system services, for communication with other applications, and for the
management of their execution environment are needed. These abstractions define
the overall system’s style and versality. For example, Unix-based systems expose a
large number of kernel functions via the system call interface. Where a reference to
a specific instance, for example a file, is needed, a numeric handle, for example a
file descriptor, is passed via the call arguments and the kernel function looks up the
instance in a type- and process-specific table. Other designs focus directly on these
instances and let the application communicate with them via a small set of system
calls, see for example [Lie96]. This style is closer to method invocations on kernel
objects. A major advantage is, that the management of instances can be unified while
giving the application/user more explicit control.

3.1 Layers and Object Types

Different styles of interaction between objects can be found inside the kernel. This
is caused by the differentiation between purely local actions that do not leave their
hardware thread, communication mechanisms that coordinate the kernel’s activities
across hardware threads, and the communication between user-mode applications
and kernel via system calls and invocation messages.

7

MyThOS D2.2 Gesamtarchitektur

Resource Management

Synchronous Layer
C++ ObjectsHardware abstractions Language-level

method calls

User Layer Object
Capabilities

Applications, supervisors,
user-level services

System calls
as invocations

Asynchronous Layer Asynchronous
Objects

Distributed kernel-level
services

Asynchronous
method calls

Scheduling

Managed Layer Kernel
Objects

User-visible objects
Invocation
messages

Access Control

Figure 1: Layers and object types.

This section introduces layers of the software architecture in order to simplify
the later discussion of the respective interaction styles. The interaction styles also
constrain the object model in order to lead to interoperable interfaces. A short
summary of the layers and object models in shown in Figure 1.

Synchronous Layer: This is the lowest, most basic layer of the architecture. Ordin-
ary C++ objects are used to implement fundamental data structures and basic
hardware abstraction components. These objects are used via the ordinary C++
method and function calls and their implementation is executed immediately in
the current logical control flow.

This layer is responsible to provide the runtime environment that is needed
by the asynchronous layer. This includes the scheduling of asynchronous
activities across hardware threads and mechanisms for concurrency and locality
control. Tasklet objects provide the abstraction for asynchronous activities
and monitor objects implement asynchronous synchronisation policies such as
mutual exclusion.

Asynchronous Layer: On top of the runtime environment from the synchronous
layer, this layer hosts asynchronous objects that provide communication via
asynchronous method calls. In contrast to arbitrary C++ object methods, the
asynchronous methods consume a Tasklet as small state buffer and a reference
to an asynchronous response handler object. The actual implementation of the
called method can be executed at a later time and also on a different hardware

8

MyThOS D2.2 Gesamtarchitektur

thread. The call returns by calling a respective asynchronous response method,
passing along the Tasklet.

This layer implements shared kernel infrastructure and is not directly vis-
ible to the user. Examples are the resource inheritance tree and supporting
asynchronous objects for the implementation of kernel objects.

Managed Layer: See also 6.4This layer manages the resources and life cycle of kernel objects
through capabilities as an unified smart pointer mechanism. The capabilities
track the resource inheritance beginning from memory ranges over kernel
objects allocated in this memory to derived weak references that point to
the same kernel object. In cooperation with the memory management this
inheritance enables the clean deallocation of kernel objects and recycling of
the respective memory. Alongside the basic state information that is used by
the kernel’s resource management, the capabilities include generic and type-
specific access rights. These are used by the system call interface to restrict the
user’s capability invocations. Such invocations are forwarded as asynchronous
method call’s to the invoke() method of the targeted kernel object.

This layer contains all user-visible and call-able system services, which are
introduced in Section 3.2. A small set of system calls allows to push capability
invocations from the application to the kernel objects.

Application Layer: Applications, supervisors, and other system services live in
the application layer. Application threads interact with kernel objects via
capability pointers, which are logical indexes into the thread’s capability space.
Communication on the application layer is possible via shared memory in the
logical address spaces and via inter-process communication (IPC) services of
the kernel. Libraries can introduce various middleware layers for higher-level
parallel abstractions.

3.2 Core Abstractions: Kernel Objects

Kernel objects are the smallest components with a managed and application-visible
life cycle. Figure 2 shows a class diagram of the interactions between the core kernel
objects.

9

MyThOS D2.2 Gesamtarchitektur

AddressSpace ExecutionContext Portal Frame

CapabilitySpace

Frame

SchedulingContext

*
*

*1 *1

invocation buffer
0,1*

1

*

1

CapEntry1 * IKernelObject

* 1

Figure 2: Interaction between the basic kernel objects.

Address Space: See also 4.2The logical address space configuration, that is the translation
from logical to physical addresses and the access protection, is represented
through Address Space kernel objects. They allow to manipulate the protection
flags, map physical memory frames into a logical address space, and unmap
address ranges. The Address Space is responsible to react to the deletion of
mapped frames, which happens through the resource revocation mechanism
and unmaps the frame. The TLB invalidation on all affected hardware threads
has to be implemented by the owner of unmapped or revoked frames because
the user-level code has to keep track of the used address spaces anyway.

Capability Space: These manage the application’s access to kernel objects by im-
plementing a mapping from numerical capability pointers to capability entries.
These entries contain the pointer to the kernel object, meta-data such as ac-
cess rights, and information about the inheritance history for the resource
management.

Execution Context: User-mode threads are represented by Execution Contexts.
Each execution context is associated with an address space, a capability space,
and a scheduling context. It is responsible to track the execution state (waiting,
running, preempted. . .) and the user-mode processor state (register contents,
the thread-local storage configuration. . .). The address space, capability space,
and scheduling context can be shared between many threads and arbitrary
combinations are possible.

Scheduling Context: See also 4.1Scheduling contexts manage the processing time of execution
contexts on hardware threads. It is their responsibility bring ready execution
contexts into actual execution by scheduling them on a selected hardware
thread. In the basic variant of MyThOS, each scheduling context represents a
single hardware thread and the associated execution contexts are scheduled
cooperatively only on this thread with FIFO order. Thread migration can be
achieved by rebinding execution contexts to other scheduling contexts.

10

MyThOS D2.2 Gesamtarchitektur

Portal: See also 5.5Portals facilitate the deferred synchronous communication between exe-
cution contexts as well as between applications and kernel objects. Each
execution context needs a portal in order to issue capability invocations, send
and receive IPC requests, and send responses. Portals hold a capability to
an invocation buffer frame, which is used as shared message buffer between
application and kernel. Each portal is associated with one execution context,
which is resumed whenever a message arrives at the portal.

Frame: In order to map physical memory into an address space, especially to
established shared memory across address spaces, a handle to such physical
memory regions is needed. These are represented by frames as contiguous
well-aligned ranges of physical addresses. The frame objects are responsible for
tracking the memory’s use in address spaces and enforce effective revocation
by unmapping themselves from all affected address ranges. Frame capabilities
can be inherited into subranges of the frame.

Untyped Memory: See also 4.3Appropriate (physical) memory is needed in order to create
new kernel objects. These memory ranges cannot be frames, because this
would allow to map the memory of kernel objects into user-level address spaces.
Hence, untyped memory is used as origin of the available physical kernel
memory. Like frame objects, untyped memory objects represent contiguous
ranges of physical addresses. They are responsible to manage the used versus
free parts of the range. Resource inheritance is used to split free untyped
memory into smaller portions. This is the key ingredient to the user-controlled
distributed concurrent allocation of kernel objects.

Converting untyped memory into actual kernel objects is achieved via factories.
The initial factory implementation is responsible for all the basic kernel objects
described in this section. The creation of custom, application-specific kernel
objects can be facilitated via additional factory kernel objects or by extending
the initial factory implementation.

3.3 Concurrency Control: Tasklets, Monitors, Lock-Free Algorithms

In a system with many concurrently running hardware threads, multiple threads can
perform system calls in parallel. This introduces a consistency challenge because
one thread could manipulate or delete a kernel object while another thread tries to
use it. In addition, interrupt signals and traps from the processor and devices can

11

MyThOS D2.2 Gesamtarchitektur

preempt the execution of a hardware thread and jump into kernel mode. Preemption
of user-space activities looks very similar to entering the kernel via system calls. But
preemption of kernel-mode execution can introduce subtle deadlocks and inconsist-
encies. Hence, a concurrency control strategy is needed that ensures consistency of
all kernel state.

The MyThOS kernel does not allow on-demand allocation. In consequence, no
message objects, state copies, or kernel threads can be allocated on the fly. The
concurrency control has to operate with statically allocated resources. This excludes
unbounded asynchronous messages, read-copy-update mechanisms, and cooperative
kernel threads for lock-based critical sections. The kernel should not wait busily
in fine grained locks. Event-style execution models can be a useful alternative
if all aspects of the system design and implementation respect their limitations
and constraints. This has the additional benefit, that single-stack kernels need an
event-based model anyway.

• All asynchronous operations have to be deferred synchronous cycles. Requests
transfer the logical control flow and responses return it.

• Transitional states and the transitional use of internal resources has to be
protected by a flow control mechanism. The next incoming request can be pro-
cessed just after the all outstanding responses of previous deferred synchronous
cycles have been processed.

• There is just a finite number of entry points into the kernel (system calls and
interrupts) and each entry point can initiate just a finite number of logical
control flows.

• Forking of logical control flows requires the ownership of statically allocated
resources.

In MyThOS, asynchronous objects are the main synchronisation mechanism
throughout the kernel, providing mutual exclusion, operation ordering, flow control,
and bounded asynchronous communication. These objects provide asynchronous
methods, which are called like C++ methods but are actually executed later and
possibly on a different hardware thread.

Tasklets: See also 6.3The signature of asynchronous methods follows a specific pattern: a refer-
ence to a Tasklet object is passed as temporary storage for the asynchronous
execution state. The Tasklet objects have a fixed structure that enables en-
qeueing into queues, reflecting about source and destination of the task, and a
handler function with a limited space for additional state data or arguments.

12

MyThOS D2.2 Gesamtarchitektur

Monitors: See also 4.1Inside the asynchronous methods, monitor objects are used to imple-
ment the actual synchronisation and communication. Different variants are
available to choose between simple mutual exclusion, multiple reader/single
writer, response-before-request synchronisation patterns. The monitors do not
need dynamic memory management because they use the forwarded tasklet
argument to manage their processing state and communication.

It is the monitors responsibility to bring enqueued tasks into actual execution on a
suitable hardware thread. As example implementation, each monitor is bound to a
hardware thread and all Tasklets are enqueued into a task queue at this thread. This
ensures mutual exclusion. Priorities like preferring the processing of responses over
beginning of new requests can be implemented by a respective priority hierarchy
of task queues at each hardware thread. A different implementation, similar to
delegation queue locks, uses a Tasklet queue inside the monitor. Whenever a new
task is enqueued as first task the hardware thread has mutually exclusive access and
can process the task directly or enqueue the monitor into the threads task queue.

Discussion. The life cycle of a Tasklet can be interpreted as a credit-based flow
control: Client objects can issue asynchronous calls only if they own a currently
unused Tasklet, that is have remaining credit. The request call passes the Tasklet
credit to the server object and, there, it can be used for further internal asynchronous
processing. Finally, the response call returns the Tasklet and the associated credit
back to the client, which enables the client to issue a new asynchronous request.

The Tasklet life cycle can also be interpreted as a logical control flow. The request
call forks the logical control flow and the Tasklet is used as message from client to
server. Inside the server, the Tasklet stores the logical control flow’s state. Finally,
the response call finishes the logical control flow and the Tasklet acts as message
from server to client.

The monitors are implemented on the synchronous layer where just ordinary
synchronous C++ method calls but no mutual exclusion or locking mechanisms are
available. Here, synchronisation and communication primitives of the hardware have
to be used. For example, atomic compare-and-swap, fetch-and-add, and exchange
operations on shared memory are sufficient to implement the obstruction-free FIFO
queues needed for the monitors.

See also 5.3The monitors can be interpreted as actors [HBS73] that send Tasklets as messages
between each other. Instead of unlimited asynchronous message queues like in actor

13

MyThOS D2.2 Gesamtarchitektur

Capability
+permissions: int
+subject: KernelObject*
+object: KernelObject*
+parent: Capability*
+inherited: Capability*

+invoke(Msg*)
+revoke()

KernelObject
+reference count

+invoke(Capability*,Msg*)
+revoke(Capability*)

ExecutionContext

SchedulingContext

Portal

owned capabilities*

**

1

* CapabilitySpace
+lookup(index): Capability*

*

Figure 3: Conceptual interactions between capabilities as smart pointers and kernel
objects. The implementation stores just a subset of these pointers.

models, the degree of asynchronous activity is bounded by the limited amount of
statically allocated Tasklets. Unlike a fixed-size mailbox for incoming messages, the
MyThOS Monitor’s can receive an unlimited amount of tasklets without failing or
blocking.

3.4 Dynamic Resource Management through Capabilities

One of the main problems that a kernel has to solve is the management of dynamic
resources—especially the dynamic allocation and deallocation of objects in the
kernel’s memory. Which and how much memory is an application allowed to use?
What happens if the kernel’s memory reserve is depleted? Which kernel objects are
affected when deleting an object? When is it safe to delete objects and which are
still used by an application?

MyThOS solves these problems through three principles. First, all kernel objects
are designed to operate without any on-demand allocation. For example, the asyn-
chronous communication layer Sec. 3.3pre-allocates all needed message buffers inside the
callers of asynchronous objects. Likewise, the IPC portals communicate with pre-
allocated invocation buffers. Hence, the system’s normal operation is not impacted
by hidden memory management overheads and cannot fail due to depleted resources.

Second, just the creation and deletion of kernel objects involves dynamic memory
management. The respective memory pools are represented via Untyped Memory
kernel objects. When an application wants to create a kernel object, it first has to
own an Untyped Memory capability with sufficient free space. Sec. 5.4The boot sequence
hands over the initial Untyped Memory. In combination, this steers the applications’
use of kernel memory and using up all memory does not affect unrelated applications.

14

MyThOS D2.2 Gesamtarchitektur

Finally, based on the concept of object capabilities, the resource inheritance tree
implements smart pointers and weak references to kernel objects in combination
with tracking the object’s resource inheritance. Sec. 6.4Figure 3 shows a conceptual model
of the interactions between capabilities and kernel objects. When a kernel object
is allocated from an Untyped Memory, a respective Original Capability is created
that points to the kernel object and has the Untyped Memory as parent. Therefore,
the inheritance tree enumerates all objects that are contained inside the memory
region and allows to force the deletion of the contained objects. Likewise, all long
term references to kernel objects are stored as children inside the inheritance tree.

The inheritance acts as a weak reference mechanism with the added benefit of
being able to inform the affected subjects about the ongoing deletion. By removing
all inherited capabilities, the kernel ensures on behalf of the user that no new
asynchronous activities can be started on the object. On top of this mechanism, the
deferred deletion support of the asynchronous objects layer ensures that objects are
not deleted before all deferred activities have completed.

The capability paradigm of Miller et al. [MTS05] differentiates between subjects,
objects, permissions, and invocations. Subjects are the smallest units of computation
that can hold access rights and objects are the smallest units to which access rights
can be provided. A direct access right gives the subject the permission to invoke the
behavior of the object. In this sense, the kernel objects take the role of capability
subjects and objects. The user cannot access capabilities directly, that is their
instance data structures as C++ object. Instead, a capability space maps from
numerical indexes to capability entries. Some capability entries are stored inside
other kernel objects and can be used only indirectly.

3.5 Physical Memory and Address Space Management

Virtual memory with access control is the most important hardware-level protection
mechanisms. Thus, any manipulation of the hardware’s address translation tables
has to be supervised by the operating system. Otherwise, applications might be able
to map foreign physical memory into their own address space and compromise the
consistency of the overall system.

The current x86-64 processor architectures support up to three different frame
sizes (4KiB, 2MiB, 1GiB) and the address translation employs a four-level page table
structure. The following kernel object types are used to represent them:

15

MyThOS D2.2 Gesamtarchitektur

Frame: A frame represents a contiguous range in the physical address space that
is backed by some kind of memory or a memory-mapped device. The range is
restricted to certain sizes and respective alignment in order to reduce imple-
mentation overhead. Currently these are 4KiB, 32KiB, 256KiB, 2MiB, 16MiB,
128MiB, 1GiB, and 8GiB.

It is not useful to dynamically allocate additional kernel objects whenever
smaller frames are derived from a large frame. These objects would inherit
resources from both the original Frame and an Untyped Memory, which violates
the resource inheritance tree. Instead, the flyweight pattern [GHJV94] is used,
that is Frame capabilities point to the same statically allocated Frame kernel
object.

MemoryRegion: For frames that lie outside of the kernel’s initial Untyped Memory,
a respective base for the flyweight Frame object is needed. These are allocated
as MemoryRegion objects and provide the shared Frame object for all frames
that are derived from this region.

PageMap: Each page map represents an individual table in an address space struc-
ture. Page maps are bound to a specific level during their creation. When
mapping a frame or a page map into a page map’s entry, the kernel checks the
frame size and page map levels. One can map either a page map of the next
lower level or a frame of the same level.

The top level table is called page map level 4 (PML4) and each of the 512
entries represents 512GiB of the logical address space. The PML4 entries point
to page map level 3 tables (PML3 aka page directory pointer table PDP) where
each entry can represent a 1GiB page or point to the next level. The entries
of the page map level 2 tables (PML2 aka page directory PD) can represent a
1MiB page or point to a page map level 1 (PML1 aka page table PT), which
contains 512x 4KiB pages.

MappedFrame, MappedPageMap: The owner of a frame retains the right to re-
voke the frame, which equates to unmap the frame from all affected page maps.
The same is true for mapped page maps. In consequence, references from the
frames and page maps to their mapped entries are needed. At the same time,
page maps reference up to 512 mapped frame or page maps. This many-to-many
relation has to be updated when existing mappings are overwritten, page maps
are deleted, or frames are revoked. Therefore, MyThOS page maps include the
storage for one weak reference per entry and these are implemented through

16

MyThOS D2.2 Gesamtarchitektur

respective capability entries. Again, the flyweight pattern is used to share the
kernel object between all mapped frames and mapped page maps.

MyThOS stores the mapped frame capabilities inside the PageMap kernel objects,
which allows for straight forward updates. This design allows to map page maps and
frames into multiple address spaces, which enables shared memory and page map
sharing. The downside is, however, that storage for the weak references is wasted
when just a few entries are actually mapped.

The deletion of a Mapped-type Capability does not force a TLB invalidation on all
the hardware threads that use the mapping. In implementing such an behavior would
imply traversing large portions of Inheritance Tree in order to find every EC that had
access to the mapping, a costly operation that would be carried out redundantly for
larger address space reconfigurations. For HPC applications, this does not matter,
as the application manages itself and is able to issue TLB invalidations only when
necessary. In other scenarios, the supervisor that manages the address space must
track all user-threads that share that the mapping and invalidate the TLB when in
doubt.

3.6 User Access through Capability Spaces

Applications need some access path to kernel objects and not all applications should
be able to access any kernel object. Hence, a translation from a per-process or per-
thread name space to the process’s kernel objects is needed. It should be possible
to share these translation fully or partially between threads and between processes.
For the compute cloud scenario, it is useful to hand access to kernel objects from
the supervisor to unprivileged applications while keeping the final control of the
kernel object in the supervisor. Finally, a mechanism is needed to safely delete kernel
objects and revoke access rights.

MyThOS uses an object capability model that brings together the kernel-internal
resource management and the various user-to-kernel translation tables. On the re-
source management level, capabilities are smart pointers to kernel objects combined
with some meta-data about access rights and resource inheritance information for
clean deallocation. The translation from user-level capability pointers to actual cap-
abilities and kernel objects is facilitated through capability spaces. Each execution
context (user thread) is assigned to one capability space.

17

MyThOS D2.2 Gesamtarchitektur

Capability Map: In order to balance the storage consumption and the actually used
name space, the capability spaces are implemented as radix trees.1 The root
and intermediate tree nodes are implemented by capability map kernel objects.
Each capability map has a fixed power-of-2 size in order to work with static
memory allocation. In addition, each map can have a guard prefix bit pattern in
order to skip intermediate maps in sparse capability spaces.

Capability Pointer: The user-space applications and supervisors use capability
pointers as a numerical index into their own capability space. These pointers
are a 32bit integer and the root capability map interprets the most significant
bits of the pointer. First, the guard bits are checked and, if they match, they
are shifted out to the left. Then depending on the map’s size, the first most
significant bits are used as index into the own capability entry table and are
shifted out to the left as well. The capability entry points to a kernel object
and the object’s lookup() method is used to implement the recursive descend.
Leave objects check that the remaining capability pointer is zero. Only the
lookup method of lookup references repeats the procedure on the next lower
tree node.

4 Physical View

The physical view discusses the deployment with respect to the placement and
replication of components onto processors and hardware threads as well as the basic
memory layout.

4.1 Locality Control via Monitors and Scheduling Contexts

With a large number of hardware threads and non-uniform hardware topology, it
becomes increasingly important to control the placement of both data and tasks. For
example, access to remote memory in a NUMA systems can degrade performance of
a system considerately by delaying serial program phases and congesting memory
interconnects. Even worse, there are low-level operating system tasks that can only
be executed on certain hardware threads: configuration registers such as the address
space (CR3), devices such as the LAPIC, and configuration operations such as cache
flushing and TLB invalidation can only be accessed by the affected hardware thread.

1aka compact prefix trees, https://en.wikipedia.org/wiki/Radix_tree

18

https://en.wikipedia.org/wiki/Radix_tree

MyThOS D2.2 Gesamtarchitektur

On the asynchronous layer, locality control is exerted through the monitor objects.
Because monitors provide the interface for the asynchronous execution of method
calls, they can forward these calls to kernel-level task schedulers on other hardware
threads. Various policies can be implemented and configured via the monitors. This
ranges from unconditional delegation to a fixed hardware thread, over load balancing
across groups of threads, to opportunistic delegation [FK12] in order to improve
the cache locality. The delegation to fixed threads can be used to bind operating
system services to dedicated processor cores. On the other end, monitors for
purely thread-private asynchronous objects do not not need additional concurrency
control mechanisms because the single physical control flow serializes the execution
implicitly.

On the managed and application layers, the locality of user-level threads is con-
trolled through the scheduling context of an execution context. These are responsible
for bringing runnable execution contexts into actual execution on an appropriate
hardware thread. The scheduling context implementations use the monitor concept
of the lower layers to implement these policies. The simplest variant is bound to a
fixed hardware thread. All execution contexts that use such a scheduling context are
run on this hardware thread. More complex scheduling contexts can implement load
balancing across local groups of hardware threads.

4.2 Logical Address Spaces: Kernel versus User Space

It is necessary to differentiate two principal types of logical address spaces. The
kernel space is used by the operating system kernel with full access permissions
whereas the user space is used by applications with user-mode execution. The
construction of user spaces is supervised and restricted by the kernel in order to
enforce isolation and protection between independent applications.

Some hardware architectures switch between completely independent kernel and
user address spaces on each system call. However, x86-based processors use a
shared approach where each address space contains both a kernel and a user space
in order to reduce the overhead of system calls. The difference is achieved by a
access permission flag that protects kernel-space pages from access during user-
mode execution. On x86-64 architectures, the actually 48-bit logical address space
has a natural separation into a lower 128TiB half from 0x0 to 0x7FFFFFFFFFFF and
an upper 128TiB half from 0xFF80000000000000 to 0xFFFFFFFFFFFFFFFF.

19

MyThOS D2.2 Gesamtarchitektur

MyThOS, like most operating systems, uses the upper half as kernel space and
the lower half as user space. This affects the Page-Map Level 4 table (PML4), where
just the 256 lower entries are writeable for the user-space management while the
upper 256 entries have fixed values that point to the kernel-space’s Page-Map Level 3
tables (PML3 aka PDPT). These are shared across all hardware threads and are rarely
modified by the kernel as discussed in Section 4.3. When creating PML4 objects, the
upper 256 entries are directly filled with the kernel space default entries. Therefore,
later manipulation of the kernel space is transparent to all address spaces and does
not require to touch every PML4 object.

4.3 Kernel-Space Memory Management: Physical Memory

In order to be independent of the user address space layout, the kernel has to
map the memory of all kernel objects and everything that is accessed from within
kernel-mode execution into the kernel space. Access to user space addresses is
possible in principle but requires to track which address space the address belongs
to and handle page access exceptions. All objects and data structures need to
placed appropriately into the kernel space, Sec. 5.4whether they are created during the boot
sequence or dynamically allocated and deallocated during the system’ lifecycle.

All of the kernel’s memory allocation is facilitated through Untyped Memory kernel
objects. Based on the firmware’s memory map, the initial untyped memory is created
and, then, used to allocate all initial data structures—not just initial kernel objects.
The remaining untyped memory is passed via a capability to the root application.

The kernel-mode code operates on physical addresses. This removes the need to
establish dynamically kernel-space page tables, which would require a kernel-space
memory management for the on-demand allocation of page table structures. Of
course, the processor architecture does not allow to access the physical addresses
directly. Therefore, a contiguous direct mapped range, similar to an identity mapping,
is initialised in the kernel-space during the boot sequence. Physical addresses are
accessed by using them as offset into this range.

This direct mapping segment covers the whole physical memory or at least a large
enough portion to provide space for the later kernel objects. The covered range is
handed as untyped memory to the user. Any additional memory is handed as frame
objects to the user. This ensures, that the kernel can directly access all kernel objects
without having to fear page access faults.

20

MyThOS D2.2 Gesamtarchitektur

The kernel can implement an optional memory protection scheme in order to detect
bugs earlier. Most parts of the direct mapped range are read&write protected until
they are explicitly used for allocation via an untyped memory or via a temporary
access to specific physical addresses. This requires separate tables with reference
counters in order to prevent revoking access concurrently. These reference counters
are held per 2MiB page. Access to smaller objects is simply extended to the enclosing
2MiB aligned range.

The only user-space memory that is accessed by the kernel are the portal’s in-
vocation buffers. Here, seL4’s strategy is applied in order to avoid all the hassles
with kernel-mode page faults: the kernel accesses the buffer directly via its physical
address, which is known through the frame object that was registered as buffer at
the portal. The user maps the same frame into its user-space. Additional care is
necessary to differentiate frames inherited from untyped memory against frames
that are not accessible via the kernel’s direct mapped range. When registering a
buffer frame at a portal, the portal has to check whether the physical address range
lies within the direct mapped range. Alternatively, the frame capabilities can contain
a kernel access flag that shows which frames are accessible to the kernel.

Custom kernel objects might need to access additional regions of the physical
address space, for example to implement device drivers. These ranges are not part
of the direct mapped range and, hence, mapping them into the kernel space requires
dynamic allocation of page table structures. Note that the mapping is created on
user request during the creating of these custom kernel objects. Hence, the user can
provide the needed untyped memory.

4.4 Core-Local Memory: FS/GS Segment Base

Multiple hardware threads share the same kernel-space address layout. However,
each hardware thread requires a few thread-specific data structures such as local
task queues and state information about the currently active user thread or execution
context. Global variables, that is outside of function bodies and class definitions,
and static member functions cannot be used for these structures because, then, all
hardware threads would access the same instance instead of their own. Hence, a fast
lookup mechanism is needed that translates logical identifiers into the respective
hardware-thread-local instances.

This situation is very similar to thread-local storage in application threads and
uses the same hardware support. The main difference is, that the kernel’s core-local

21

MyThOS D2.2 Gesamtarchitektur

memory is relative to the physical position, that is the hardware thread, whereas the
application’s thread-local storage is relative to the logical control flow, that is the
execution context.

MyThOS uses the base address of the x86 architecture FS and GS segments.
This enables fast access to thread-local storage via segment-relative load and store
instructions. For historical reasons, the segment descriptors can only hold 32-bit
base addresses. These can be used as thread-specific 32-bit offset with the logical
identifier as 64-bit base. However, special model specific configuration registers in
x86-64 processors allow to override the segment descriptor’s base address with a
64-bit address.

The base kernel requires only a limited set of core-local variables that are known at
compile time. Because the maximal number of hardware threads is also known when
linking the kernel image, a sufficiently large core-local memory segment is reserved
in the kernel image. The static addresses to these core-local variables point to the
instances of thread 0. The GS segment base contains a 32bit displacement for the
hardware thread’s instances. Any GS-relative memory access to core-local variables
thus uses the sum of the first thread’s address to the variable and the actual thread’s
GS displacement.

This strategy does not require additional address mappings in the kernel-space. In
principle, dynamic allocation of additional core-local variables is possible: Unused
parts of the linked core-local segment can be used and additional segments can be
allocated from untyped memory at run-time. This works because the GS base address
always is a displacement offset relative to the beginning of such segments.

5 Dynamic View

This section focuses on interactions inside the kernel, between applications and
kernel, and between applications as well as the life-cycle management of components
and the necessary scheduling.

5.1 Error handling: IPC Messages to Supervisor

The error handling differentiates between asynchronous exceptions and synchronous
errors. Asynchronous exceptions preempt the execution of user- or kernel-mode
execution and jump to the kernel’s interrupt handling. Synchronous errors are

22

MyThOS D2.2 Gesamtarchitektur

detected by assertions during normal operation, for example when a system call fails
due to insufficient access rights. Both situations require a recovery strategy that
forwards the exceptions and errors to appropriate handlers.

Synchronous errors appear during system calls or are related to (deferred) syn-
chronous calls. They are passed to the application via a normal system call return
with the error encoded in the return values.

Asynchronous exceptions arise from interrupts, processor traps, and all faults that
cannot be tracked back to a synchronous system call. Exceptions during user-mode
execution are transformed into an invocation message and sent to a exception handler
kernel object. This object is selected based on the affected execution context and
is configurable. The basic variant uses a portal that activates an execution context,
which can be used to implement supervisor hierarchies. The user-mode handler
receives the exception message, can inspect and handle the causes and optionally
restart the affected execution context.

Because of concurrent state changes, exceptional situations can occur during
kernel-mode execution. These are detected through assertions like synchronous
errors but cannot be associated with a specific, currently active system call. For
example, a response message can hit a revoked or mis-configured client portal. This
exception is not interesting for the server side and, thus, has to be handled by the
client’s exception handler in the same style as asynchronous exceptions.

5.2 Concurrent Object Deallocation

In a concurrent system, races between object usage, such as method calls and
access to member variables, and object deallocation can easily occur. See also 3.4The capability-
based weak references mechanism cleans up long-term references before any object
deallocation. However, temporary references in messages and concurrent control
flows, for example between capability lookup and using the object, could still lead to
race conditions and premature deallocation.

Our solution delays the destruction of objects until all temporary references and
in-flight messages are cleared. First, kernel objects are deallocated only when the
Untyped Memory they were allocated from is recycled. Before this happens, all
long-term references are cleared through revoking all inherited capabilities in the
resource inheritance tree.

23

MyThOS D2.2 Gesamtarchitektur

In order to deal with outstanding messages, pending responses, and references con-
tained inside in-flight messages, the kernel object’s Monitor See also 3.3tracks both the number
of temporary references and pending messages of the object. Object destruction is
facilitated through an asynchronous method and the Monitor executes this call after
all temporary references and pending messages are finished. Because all references
on the capability layer are already revoked, no new temporary references or pending
messages can be created.

This leaves short-term references in concurrent kernel control flows. For example,
another hardware thread could have successfully looked up the object pointer before
the capability was revoked but still have not issued its request and, hence, is invisible
to the object’s Monitor. To resolve this race between a thread increasing the counter
after reading a soon deleted capability and the deallocation of the object, the memory
is only recycled after all hardware threads have either left the kernel or returned to
the task scheduler once.

A hardware thread that is not inside the kernel can hold no short-term references.
Likewise, returning to the hardware thread’s task scheduler ensures that all activities
that could have held a short-term reference have completed and have updated the
Monitor’s reference count. This situation is detected lazily by scheduling a tasklet
at every hardware thread that is in the kernel at the time of the Untyped Memory’s
recycling and waiting for the execution of these tasks. To this end, a broadcast ring
of asynchronous objects is used. Hardware threads that are not currently inside
the kernel are skipped in order to avoid waking up sleeping threads or needlessly
interrupting applications.

5.3 Credit-based Flow Control

The amount of memory in many-core architectures is quite small in relation to the
number of hardware threads. With asynchronous programming models, an even
larger number of logical control flows exists. Therefore, assigning each control
flow a practically infinite, hence “large enough”, message/context buffer is not feas-
ible. Conversely, dynamic memory allocation for buffers injects additional runtime
dependencies and, thus, latencies into the communication. Last but not least, the
system throughput is limited by the maximal throughput of the interconnect and the
maximal throughput of the execution units. Once one of them is saturated, being able
to create further messages or control flows does not increase the overall throughput
any further.

24

MyThOS D2.2 Gesamtarchitektur

In MyThOS, these difficulties are avoided by incorporating the statically allocated
bounded message buffer into the design of the asynchronous objects model: See also 3.3Tasklets
serve both, as a buffer to hold a message or a control flow context, and as a token to
implement credit-based flow control. Because each call to an asynchronous method
consumes a Tasklet, the number of messages and control flows originating from
a single asynchronous object is bounded by the number of Tasklet that it owns.
New asynchronous activities can be started only after the Tasklet was returned
through a call to a response method. Passing the Tasklet is explicit and visible to
the programmer. This forces the designers and developers to reason about the
implications of asynchronous calls.

Inside asynchronous objects, the passed tasklet is used to store all information
about the issued method call. The tasklet is scheduled through the object’s Monitor
for mutually exclusive execution and the actual implementation of the called method
calls an asynchronous response method on the caller’s continuation object in order
to pass along or return the Tasklet and flow control credit.

A more complex Monitor is needed if incoming asynchronous requests lock object-
internal resources such as additional Tasklets for parallel communication with mul-
tiple other objects. In this case, new requests can be executed only after the previous
request is completed, that is after the request’s processing received all internal
asynchronous responses. In such situations, a Monitor implementation is used that
queues incoming new request separate from incoming response messages. Response
processing is prioritised and the oldest of the pending requests is executed only after
the previous request was declared as finished.

5.4 Boot Sequence

The user-visible part of the system begins at the initial user thread, which usually is
the first supervisor. In order to reach this point, it is necessary to initialise address
spaces, start up the other hardware threads, create first kernel objects, and load the
initial user thread.

The boot sequence is performed in a sequence of stages that initialise subsequent
layers of the kernel architecture. Stage 0 is loaded and executed by the platform’s
boot loader or firmware in the raw physical address space. It creates an initial page
table that contains the lower and higher half kernel codes at the correct logical
addresses. Then, it switches to the x86-64 long mode and jumps to the higher half
kernel code.

25

MyThOS D2.2 Gesamtarchitektur

The Stage 1 sets up the final kernel address space without the lower half kernel,
because the lower half will be used as user space. This stage also sets up additional
mappings as needed and configures sensible access rights. Its advantage over the
previous stage is, that it can already use all of the kernel’s code.

After switching to the final kernel address space, the Stage 2 is executed on the
first hardware thread (aka Bootstrap Processor, BSP). It configures the root Untyped
Memory object by setting the managed physical address range and inserting all free
ranges that are backed by usable memory. For this purpose it can be necessary to
parse the platform’s memory table. The GDT, Core-Local Memory, Local APIC, and
initial objects for all hardware threads are allocated from the root Untyped Memory.
Finally, this stage uses the LAPIC to start up all other hardware threads and switches
to the hardware threads actual kernel stack.

The Stage 3 is responsible for loading the initial user thread. This is part of the
kernel as binary blob with a text, bss, and data segment with fixed logical addresses
and limited size. A respective address space is created by allocating Page Maps,
creating Frames out of the current physical position of the binary blob, and mapping
these Frames at the predetermined logical addresses. The initial Capability Space is
created by allocating Capability Maps and filling in all Scheduling Contexts (one per
hardware thread), an initial Portal for system calls, the remaining Untyped Memory,
and references to the own Execution Context, Address Space, and Capability Space.
Then, the Execution Context’s register set is initialised with the code entry point as
instruction pointer and additional registers for the number of Scheduling Contexts
and Untyped Memory objects. A user stack is not needed yet, because the supervisor
can set the stack frames up on its own.

Stage 4 is initiated by scheduling the initial user thread on the bootstrap hardware
thread. All other hardware threads are still in their scheduling loop and wait. The
initial user thread performs system calls through its Portal in order to configure its
Address and Capability Spaces, create more Execution Contexts and so on. An initial
communication channel to the external management service on the host computer
is needed. This has to be provided by the Stage 3 setup. The implementation of
this channel depends on the platform. Based on commands and data from this
channel, the initial user thread loads applications and schedules them on the desired
Scheduling Context.

26

MyThOS D2.2 Gesamtarchitektur

open

invoking

invoke

listening

listen
invoked

[request] wait

reply

[response] wait

asynchronous

synchronous

poll

[request] poll

[response] poll

poll

Figure 4: User-visible states of the Portal object.

5.5 Portal: States and Operations

Capability invocation is the main mechanism for user-mode applications to interact
with the kernel objects and to initially communicate between applications/processes,
for example between worker process and supervisor. Portals See also 3.2are the key component
for capability invocation and inter-process communication. This section describes the
system calls that enable sending and receiving invocation and discusses the Portal’s
respective life cycle.

Figure 4 shows the Portal’s states and transitions. Initially, the Portal is in the
open state and can be configured to either listen for incoming requests or to send a
request in the form of an invocation message. The Portal returns to the open state by
sending a reply in the invoked state or by receiving a reply from the invoked state.
The invoke, listen, wait, and reply transitions are triggered through system calls of
the Portal’s owner. The synchronous transitions return from the system call after the
operation completed whereas the asynchronous variants return immediately.

The message data is stored in an invocation buffer, which is shared memory
between the application and the Portal on the kernel side. Applications should write
to the invocation buffer only when the Portal is in the open or invoked state. However,
this is not enforced by the operating system because non-conforming applications
would just interfere with their own operation. The kernel objects that read from the
invocation buffer first copy the needed values before checking their validity. Hence,
concurrent manipulation of the invocation buffer is ignored.

The following system calls directly interact with the owner’s Portal. For conveni-
ence and in order to reduce the number of system calls, combined system calls such
as invoke+wait are available.

27

MyThOS D2.2 Gesamtarchitektur

invoke(portal, uctx, dest): the content of the invocation buffer is sent asynchron-
ously as an invocation to the specific destination dest, which is a capability
pointer into the caller’s capability space. In general, any kernel object that
implement the invoke operation is a valid destination. When used for commu-
nication between applications, the destination will be a Portal. The user context
uctx is an opaque pointer (64bit integer) that is returned by wait() and poll()
on arrival of the reply. It is used by the user-space runtime environment to
associate received messages with the respective communication channel.

listen(portal,uctx): this asynchronous operation switches the portal to receive
mode and allows the Portal to write into the invocation buffer. Otherwise, only
the application is allowed to write. Again, the user context uctx is returned by
wait() and poll() when a request was received.

reply(portal): is a synchronous operation that returns after the invocation buffer
is copied into the other side’s invocation buffer. The operation will succeed
quickly because the other side has to wait for the reply already. If the other
side’s Portal is not ready to receive the response or does no longer exist, the
reply operation fails immediately. This ensures that misbehaving clients cannot
delay the supervisor’s control flows.

bind(portal,ec): rebinds the Portal to a different Execution Context, which will
receive future invocation and reply messages of the Portal. This operation
can be issued in any state and just selects the Execution Context that will
be resumed by incoming messages. There is a race between rebinding and
receiving a message. Whichever is processed first decides which Execution
Context handles the message. However, applications that perform rebind
in such a receiving state should be prepared to handle the message in both
Execution Contexts anyway.

wait()→uctx: is a synchronous operation that blocks until a message on any Portal
bound the Execution Context has arrived. The message can be either a invoca-
tion or a reply, and may has been arrived on any portal that is in the listening or
invoking state. The user context uctx of the respective listen() and invoke()
calls is returned. The wait() call can be interrupted without receiving any
message. In that case the value 0 is returned as user context and the error
number is set.

poll()→uctx: works like wait() but returns immediately if no received messages
were pending.

28

MyThOS D2.2 Gesamtarchitektur

The combination invoke+wait is synchronous and returns when any message was
received on one of the execution context’s Portals. In contrast, invoke+poll is
asynchronous and returns immediately. If a received message was pending in one of
the Portals, the respective user context value is returned.

6 Implementation View

This section describes implementation aspects, for example, the files and folders
structure and the configuration management via code modules.

6.1 Compile- and Run-Time Dependency Injection

Whenever objects or software components are created by instantiating classes, the
question arises how the new objects will interact with the outside world. They require
connections to other used services and usually also some context-dependent config-
uration. These dependencies can be fulfilled by queries to omnipresent directory
services, by conventions, or via configuration methods and constructor arguments.

In order to simplify all aspects of instantiation, MyThOS applies the principle
of dependency injection throughout all levels of the architecture and source code.
This implies that no object or software component shall search on its own for its
dependencies through global variables or omnipresent directory services. Instead,
all dependencies and configuration is injected by the creator through constructor
arguments and dedicated configuration methods.

This strategy separates the code responsible for instantiation and configuration
from the component’s implementation. This helps to reduce the component’s assump-
tions about its usage environment and protects against premature policy decisions.

Run-time value injection: During object creation, the creator passes pointers to
used objects and configuration data by value via constructor arguments and
additional configuration methods. This is the most commonly used form of
dependency injection.

29

MyThOS D2.2 Gesamtarchitektur

Compile-time template injection: In C++, objects are created by instantiating
classes and generic class definitions expose template arguments that need to
be filled with actual type names and constants. This provides a mechanism for a
template type based dependency injection. For example, in order to remove the
overhead of virtual methods, the types of used objects can be injected alongside
with the pointers to these used objects. This strategy is applied wherever
type polymorphism is needed only for configuration but not during the actual
execution.

Compile-time code injection: See also 6.2Some definitions and constants cannot be injected
via template arguments and, sometimes, overuse of template arguments im-
pedes the readability just a bit too much. In these situations, static code
injection is applied by including generic header files that will provide the
missing definitions. The build configuration management has to supply actual
contents for these header files.

6.2 Source Code Composition: Code Modules

Earlier work with MyThOS showed that a single runtime-only configuration strategy is
not sufficient. Some components depend on specific hardware and compiler support,
some performance critical options require a static compile-time configuration. At the
same time, subtle differences between various platforms (xeonphi, quemu, bochs,
gem5. . .) and the desire to evaluate implementation variants required the ability to
replace and recombine code fragments.

MyThOS avoids the conditional C preprocessor spaghetti by applying the principle
of dependency injection to the source code organisation. Similar to grouping tightly
related objects into components, related source files are grouped into modules. In
this setting, the kernel objects of MyThOS are the user-visible components and
modules provide the class definitions that are needed to create the objects of these
components.

The build process is configured by the combination of module specifications and
a target specification. Basically, each module provides a set of source files and
requires a set of files. For example, such dependencies can be header files with type
definitions or source files with a specific implementation variant of a global function.
Most dependencies are extracted automatically from the #include directives in the
provided source files.

30

MyThOS D2.2 Gesamtarchitektur

1 [module.boot-memory-multiboot]
2 requires = ["platform:multiboot"]
3 incfiles = ["boot/memory/Stage3Setup.h"]
4 kernelfiles = ["boot/memory/Stage3Setup.cc", "boot/memory/Stage3Setup.cc",

"boot/memory/Stage3Setup-multiboot.cc"]
5

6 [module.boot-memory-gem5]
7 requires = ["platform:gem5"]
8 incfiles = ["boot/memory/Stage3Setup.h"]
9 kernelfiles = ["boot/memory/Stage3Setup.cc", "boot/memory/Stage3Setup.cc",

"boot/memory/Stage3Setup-e820.cc"]
10

11 [module.boot-memory-knc]
12 requires = ["platform:knc"]
13 incfiles = ["boot/memory/Stage3Setup.h"]
14 kernelfiles = ["boot/memory/Stage3Setup.cc", "boot/memory/Stage3Setup.cc",

"boot/memory/Stage3Setup-sfi.cc", "boot/memory/Stage3Setup-knc.cc"]

Listing 1: An example module specification.

The target specification lists a set of requested modules or files. A simple resolution
scheme is used to resolve dependencies: a list of missing files is collected from the
requested modules and then additional modules are selected one by one if they
provide one of the missing files. Two modules conflict when they provide files with
the same destination name. In that case the dependency resolution reports an error
and the developer has to manually select one of the possible modules by editing the
target specification. In order to reduce the tedious work of selecting large groups of
related module variants individually, the respective variants depend on a artificial tag
as resolution filter and the target specification provides this flag. For example, all
modules that target the XeonPhi depend on platform:knc and all modules specific
for the x86-64 architecture depend on cpu:x86-64.

Listing 1 shows three example modules that provide the same header file
Stage3Setup.h together with with different implementation source files. Instead
of selecting one of the variants explicitly, build target specifications declare that
they provide one of the platform tags, for example platform:knc. Then, just a single
variant has all dependencies fulfilled and will be selected automatically to fulfil the
boot codes dependency on Stage3Setup.h.

With respect to the layout of files and folders, modules are grouped into folders
based on their respective subsystem with one sub-folder per module. These module

31

MyThOS D2.2 Gesamtarchitektur

1 class Adder {
2 public:
3 void add(Tasklet* msg, AdderResponses* res, int a, int b) {
4 monitor.exclusive(msg, [=](Tasklet* msg){this->addImpl(msg,res,a,b);});
5 }
6

7 private:
8 MutexMonitor monitor;
9

10 void addImpl(Tasklet* msg, AdderResponses* res, int a, int b) {
11 // do something ... then respond
12 res->addResult(msg, a+b);
13 monitor.release();
14 }
15 };

Listing 2: An example asynchronous object.

folders contain a modules.mcconf file or several .conf files containing module
specifications. The pathes to source files are relative to the position of the module
specification. The target specifications contains a relative path to the root of the
module folders.

The top level source folder structure is roughly based on the horizontal layers.
The folder name tag is reserved for tags, a symbolic requirements do not refer to
a file and is used to specify a configuration without the need to manually pick each
platform-dependent module.

The modules folder structure mirrors the structure of the source folder. Each
module lives in its own subfolder, shared code is extracted into modules with the suffix
“-common”. There is an additional build folder that contains modules facilitating the
build process, for example by adding appropriate compiler flags to the makefile.

6.3 Interacting Asynchronous Objects via Tasklets

The asynchronous objects’ responsibility is to implement delayed and delegated
execution as base mechanism for the kernel’s concurrency and locality control. Main
challenges for any asynchronous execution are the encoding and decoding of the
desired action into messages, the storage and transfer of these messages, and the
storage of the dynamic processing state.

32

MyThOS D2.2 Gesamtarchitektur

TaskletBase
+nextTasklet: std::atomic<TaskletBase*>

Tasklet
-handler: void(*)(Tasklet*)
-payload: char[6*8]

+run(): void
+set(payload:FUNCTOR): Tasklet*
+get(): FUNCTOR
-wrapper(self:Tasklet*): void

<<concept>>

FUNCTOR
+operator()(Tasklet*): void

Figure 5: Class diagramm of the Tasklet implementation.

Listing 2 shows an example implementation of an asynchronous object. The Adder
provides the asynchronous method Adder::add() that allows two add two integer
numbers. Given a Tasklet msg, a pointer a to an Adder instance, and a pointer r
to a matching response handler object, the asynchronous method is called with
a->add(&msg, r, 1000, 1). In line 4, the call and its arguments are captured into a
C++11 anonymous function (aka closure, lambda expression) and passed to the
Adder’s monitor (line 4). The monitor uses the passed Tasklet to schedule the delayed
and possibly remote execution of the anonymous function. The actual implementation
Adder::addImpl() in line 10 performs its work and, then in line 12, calls one of the
result handler’s methods, passing along the Tasklet for the asynchronous execution of
the handler method. In line 13, the monitor is informed, that the request processing
has finished. This is necessary for the asynchronous object deletion. See also 5.2

All execution is non-blocking and, hence, waiting synchronously for results of
calls to asynchronous methods is not possible—and not necessary. Instead, request
methods also retrieve a reference to a response object that acts as continuation and
sink for the result data. Such response methods consume the tasklet and results as
arguments but have no argument pointing to another response handler.

Figure 5 shows the Tasklet’s class diagram. The base class contains an C++11
atomic variable that is used by monitor implementations to manage task queues
without dynamic memory management. The pointer is in a separate base class in
order to simplify the usage of small dummy objects for the queue management.

The Tasklet class itself contains a C function pointer very similar to active messages.
This handler function is responsible for executing the actual function object that was
stored through the set() method in the payload. Instead of the function pointer, a
virtual method could have been used. This would consume the same space but adds
a second memory lookup via the vtable pointer. The Tasklet implementation contains
a generic static implementation for these handler functions.

The size of the payload is chosen such that Tasklets are exactly one x86-64 cacheline
large (64 byte). This leaves four 64-bit words for direct call arguments. Any additional

33

MyThOS D2.2 Gesamtarchitektur

arguments have to be passed via a pointer to an argument structure, which is
provided by the caller.

6.4 Managing the Resource Inheritance Tree

Storing the complete resource inheritance tree can be very space consuming and
most of the information is never used. This reduces the system’s efficiency through
increased cache and TLB trashing and complicates the concurrent update operations
on the inheritance tree. In addition, not all possible inheritance operations have a
well-defined meaning. For example, what should happen with the children when
a capability that has derived children is copied? Who is responsible for the object
deletion when the root capability of an object is copied?

MyThOS uses a set of rules to restrict the types of capabilities that may be derived
to create children and which may be copied to create siblings in the inheritance
tree. The basic idea is to maintain a strict contained-in relation between the kernel
objects and their children. For example, a Portal that was allocated from an Untyped
Memory is contained within the address range of the Untyped Memory.

Now, just references to kernel objects require separate handling because they
represent the same address range as the capability they were derived from. The
basic idea is to use a flag in the capability in order to mark it as weak reference. This
allows to revoke all references and inform the affected capability subject or object.

However, supervisors may want to transfer access capabilities, which are weak
references too, to other applications and retain the option to revoke these individually.
For example, a different clients retrieve Portal references to the same portal. In order
to keep the different clients apart, these references do not inherit from the original
portal but from an intermediate derived capability. Thus, two flags in the capability
are used to represent original, reference, derived, and reference to derived.

This derivation and reference scheme is illustrated in Figure 6. For example, the
original capability can point to a Portal. A reference to the original enables the
holder to operate on the Portal as if owns the original. The actual access rights can
be restricted through the reference’s meta-data. The derived capability of the Portal
can be used to hand out derived references to a client application. These can be
revoked by revoking the derived capability.

The same rules are required to differentiate Frames, mapped Frames, derived
Frames, and mapped derived Frames. The mapped frames are weak references and

34

MyThOS D2.2 Gesamtarchitektur

original
00

derived
10

reference
01

reference to derived
11

referencederive

reference

Figure 6: Derivation and reference capability flags. References to derived capab-
ilities can be revoked without revoking other derived capabilities and
references to the parent.

are mainly used by the Page Maps to track the usage dependencies between address
spaces and frames. The derived frames are used to hand out the right to map frames
without loosing the ability to revoke just these mappings.

The above rules have following implications: inheritance from a capability creates
a child if the new capability is (a) a reference to an original capability, (b) a reference
to a derived capability, (c) a derivation from an original capability, or (d) an original
capability that is a real subset of the parent original capability. Inheritance creates a
sibling in the tree if the new capability is (e) a reference created from a reference, (f)
a derivation created from a derivation, or (g) an original capability that has the same
address range as its parent capability. All other cases are prohibited and the rights
management may further restrict the inheritance.

In combination, this allows to store just the prefix serialisation of the inheritance
tree in a double linked circular list. Figure 7 gives an example. The root of the
tree is the initial Untyped Memory object that represents all of the kernel’s usable
memory and is statically owned by the kernel. The circular list avoids to deal with
the special case of the list’s end. Children are inserted directly behind the parent
into this chain. In order to insert a sibling behind a capability, it would be necessary
to skip all existing children. Instead, a sibling is inserted before the capability that it
inherited from, which equally ensures that both stay within their parent’s subtree.

The parent-child relation is not stored explicitly because the objects and properties
of the capabilities are sufficient to decide this relation. This is just needed for
the revocation of access rights and deletion of kernel objects. By construction, all
children are directly behind the parent in the chain. The subtree ends when reaching
a capability that cannot be a child of the subtree’s root. This is-child-of test is
successful if (a) the address range owned by the child is a real subset of the parent’s

35

MyThOS D2.2 Gesamtarchitektur

UM (00)

UM (00)

Frame (00)

MappedFrame (01)

MappedFrame (11)

Frame (01)

UM Reference (01) UM (00)

UM (00)

UM Reference (01)

Portal (00)

Derived Portal (10)

Derived Portal Reference (11)

Portal Reference (01)

Kernel Object (00)

Inheritance

Prefix List

Figure 7: An example resource inheritance tree. UM is Untyped Memory. The two
digits mark original, derivation and reference capabilities. The dotted
arrow shows the actually stored prefix serialisation.

range, or their ranges are equal and (b) only the child has the reference flag, or (c)
only the child has the derived flag.

Figure 8 shows the class diagram of the inheritance tree. The capability entries
CapEntry store the double-linked chain and the meta data Cap. The meta data is
designed to fit into a 64-bit register. The first 32 bit contain a compressed pointer
to the kernel object that is the capability’s object. The capability’s subject, that is,
the holder of the capability entry is not stored by default. The kernel object has to
provide the actual information for the inheritance tree management. Most important

IKernelObject

+lookup(own:CapEntry*,index:CPtr): CapEntry*
+rangeUsed(own:CapEntry*): pair<size_t,size_t>
+rangeProvided(own:CapEntry*): pair<size_t,size_t>
+invoke(Tasklet*,IKernelObject*,own:CapEntry*,Msg*): void
+reply(Tasklet*,Msg*): void
+delete(Tasklet*,DeleteRes*,own:CapEntry*): void

CapEntry
+next: CapEntryPtr
+prev: CapEntryPtr
+properties: Cap

Cap
+object: KernelObjectPtr
+zombi: bit
+derived: bit
+reference: bit
+data: uint32_t

FrameCap
+physOffset(): 20bit
+framerights(): 5bit
+size(): 2bit

Frame
+physBase: size_t

MappedFrameCap
+pagerights(): 5bit
+size(): 2bit
+index(): 9bit

MappedFrame

WeakRefCap
+realObject: KernelObjectPtr

Figure 8: Class diagram of the prefix-serialised resource inheritance tree.

36

MyThOS D2.2 Gesamtarchitektur

are rangeUsed and rangeProvided for the is-child-of test. The second 32 bit contain
arbitrary type-specific meta-data that is processed only by the kernel object. For this
purpose, a pointer to the capability entry is passed to all respective methods.

Because of the limited size of the kernel space and the 8-byte alignment of all
objects, pointers can be represented with just 29 bits. The remaining three bits are
used for status flags such as zombi, derived, and reference. Frames store a 4KiB
aligned offset into a 4GiB address window, which requires just 20 bits. The base
address of the window is stored in the Frame object.

Weak reference capabilities, for example mapped frames in a page map, require
additional consideration. On revocation, the delete() method of the capability’s
object pointer is called in order to inform the affected kernel object. If this points
to the original referenced object, a weak-reference flag and a pointer to the actual
subject (the reference holder) is needed in the meta-data. In many cases, it is
easier to replace the capability object by a helper kernel object that is part of the
subject and knows how to clean up the revoked reference. For example, the object of
MappedFrameCap points to a respective kernel object that is part of a PageMap. This
leaves more space for other meta-data.

6.5 Operation Implementation in the Inheritance Tree

Even given the structure of the Inheritance Tree, described in Section 6.4, and the
approach to safely delete individual objects, described in Section 5.2, it is non-trivial
to implement high-level operations on Capability considering these operation might
be executed parallely.

There are three major categories of operations to consider: The read operations
read a capability in order to create a reference or call a asynchronous method. The
local operations locally update the Inheritance Tree, like derive, reference, but also
moving a capability into another entry. The global operations consists of operations
that may delete whole subtrees of the Inheritance Tree, such as delete and revoke.

There are several race conditions between operations from different or the same
category. The value of a Capability is only updated atomically, and can be marked as
a zombie to prevent reader from using the value. A simple solution to resolve the
races between writers is protecting the whole Inheritance Tree with a global mutex.
However, this serializes all operations which manipulate capabilities.

37

MyThOS D2.2 Gesamtarchitektur

empty

allocated usable

zombie

acquire() kill()

unlinked

linked

reset() unlink()

insertAfter() /
insertBefore()

commit()

reset()

Figure 9: States of the capability object and related operations. State visible from
observing only in the capability value are bold.

In order to implement a finer grained locking, individual entries in the inheritance
tree (CapEntries) must provide a lock. Similar to the overhand locking technique,
entries must lock itself and the previous entry in order to be removed. When travesing
the list, the lock on the previous entry is release before acquiring the lock on the
next entry.

Independant from the locking process, every capability entry has additional states
that describe its lifetime cycle, and are illustrated in Figure 9:

empty In this state, the Capability entry is not linked into the Inheritance Tree,
contains no pointer to an object, and has no additional flags set. Such an entry
can only be allocated.

allocated After being allocated, the is claimed to be used to store a capability. After
allocating the slot, a can try to acquire furter resources, e.g. memory. If that
fails, the entry is reset into the empty state.

linked This state is the same as the allocated state, but the entry is linked into the
tree. After it has been linked, it must be commited before the current control
flow suspends.

usable The usable state is the only state in which a subject can access the object
through the capability. A usable capability always contains the pointer to a
invokable Kernel Object.

zombie This is a state where the capability still contains the pointer to an kernel
object. This enable to revoke the right to access an object immidiately.

unlinked This state is the same as the zombie state, but the entry is removed from
the tree. Unlinking the entry can be used as a sequencer in order to determine
who will delete the object.

38

MyThOS D2.2 Gesamtarchitektur

Read operations just load the capability value atomically and check whether the
capability is usable, before the pointer value is used to either create a counted
reference or issue a request to the object. Races between these requests and delete
operations are resolved by the protocol described in Section 5.2.

Local operations manipulate the Inheritance Tree locally and synchronously, thus
the can hold locks during the their execution. However, to avoid race conditions with
long-running global operations, these local operations must inspect the state of the
capability entry and abort if a race is detected. For example, a zombie capability can
not be derived nor moved. In order to facilitaty the implementation of the global
operations, certain entries can also be pinned to prevent their capabilities from being
moved.

Global operations potentionally manipulate large portions of the Inheritance Tree
and potentionally run for a long time. In order to prevent long-term active waiting,
global operations only lock the entrys they are currently manipulating. Races with
read or local operations are resolved by setting approbiate flags, such as the zombie
flag of the capability or the pinning flag of the entry. Global operation must also take
special care to synchronize with each other.

6.6 Invocation Handling

This section illustrates how Kernel Obects handle invocations and how concurrent ap-
plication runtimes may expose the invocation to the programmer. Listing 3 illustrates
invocation handling in the kernel: invoke is a ordinary asynchronous function and
part of every the Kernel Objects interface. It multiplexes between different protocols
and invokable methods using a protocol identifier and a method identifier. As most
Kernel Objects, the example object only support a single protocol. After the concrete
method has been identified, the monitor is requested to execute the implementation
of the method. When a method or protocol is requested that is not implemented by
the Kernel Object, it immediately returns calls the response handler with a error
code.

In the implementation of the invoked method, the invocation message is interpreted
further to extract the arguments. Moreover, the capability is inspected to check if the
caller is allowed to invoke the function. If anything fails, the appropriate response See also 5.5is
issued. Otherwise, the actual work is done and the context of the invocation is used
to return a response according to the protocol. As required for every asynchronous
method, the implementation must signal the completion of the request to the monitor.

39

MyThOS D2.2 Gesamtarchitektur

1 void Adder::invoke(Tasklet* t, InvocationCtx* ctx, CapEntry* cap) {
2 switch (ctx->protocol()) {
3 case ADDERPROT:
4 switch (ctx->method()) {
5 case ADD:
6 monitor.request(t, [=](Tasklet*t){this->add(t,ctx,cap)});
7 return;
8 }
9 break;

10 }
11 ctx->response(t, CORE, UNKNOWN_METHOD);
12 }
13

14 void Adder::add(Tasklet* t, InvocationCtx* ctx, CapEntry* cap) {
15 int a, b;
16 bool success = ctx->readMsg(a,b);
17 if (!success || !AdderCap(cap).canAdd()) {
18 ctx->response(t, CORE, success ? DENIED : INVALID_MSG);
19 monitor.requestDone();
20 return;
21 }
22 // work with ctx->thread(), cap, a, b ...
23 ctx->response(t, ADDERPROT, SUM, a+b);
24 monitor.requestDone();
25 }

Listing 3: Kernel-side dispatch and implementation of a method invocation.

40

MyThOS D2.2 Gesamtarchitektur

1 void Adder::add(Portal* p, Future f, int , int b) {
2 p->invoke(this->obj, ADDERPROT, ADD, f, a, b);
3 }
4

5 // ... in app’s idle loop:
6 Portal* res = wait();
7 if (res) res->handleResponse(); // pushes results to f

Listing 4: Example for issuing invocation user-side.

Application runtime environments are expected to provide a concurrent program-
ming model, such as coroutines or events. Listing 4 illustrates how asynchronous
invocations can be integrated into an environment which facilitates deferred syn-
chronous execution with futures: The invocation is wrapped into a deferred synchron-
ous function that stores its result into a future. Depending on the application-side
programming model, the future may trigger an event or reschedule a coroutine when
the invocation is completed. Therefore, the application-level idle loop waits for any
invocation to complete and uses the user context See also 5.5in order to dispatch the appropriate
response handler. User-level server or services can be implemented analogously:
Listening on a Portal also is a deferred synchronous method that returns when a
request arrives.

Literatur

[FK12] Panagiota Fatourou and Nikolaos D. Kallimanis. Revisiting the combi-
ning synchronization technique. SIGPLAN Not., 47(8):257–266, February
2012.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1 edition, November 1994.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular
actor formalism for artificial intelligence. In Proceedings of the 3rd
International Joint Conference on Artificial Intelligence, IJCAI’73, pages
235–245, San Francisco, CA, USA, 1973. Morgan Kaufmann Publishers
Inc.

41

MyThOS D2.2 Gesamtarchitektur

[Kru95] Philippe B Kruchten. The 4+1 view model of architecture. Software,
IEEE, 12(6):42–50, 1995.

[Lie96] J. Liedtke. Toward real microkernels. Communications of the ACM, 39(9),
1996.

[MTS05] Mark S. Miller, Bill Tulloh, and Jonathan S. Shapiro. Multiparadigm Pro-
gramming in Mozart/Oz: Second International Conference, MOZ 2004,
Charleroi, Belgium, October 7-8, 2004, Revised Selected and Invited Pa-
pers, chapter The Structure of Authority: Why Security Is Not a Separable
Concern, pages 2–20. Springer Berlin Heidelberg, Berlin, Heidelberg,
2005.

[OSK+11] B. Oechslein, J. Schedel, J. Kleinöder, L. Bauer, J. Henkel, D. Lohmann,
and W. Schröder-Preikschat. OctoPOS: A Parallel Operating System for
Invasive Computing. In Proc. of the International Workshop on Systems
for Future Multi-Core Architectures (SFMA’11), 2011.

[RKZB11] Barret Rhoden, Kevin Klues, David Zhu, and Eric Brewer. Improving per-
node efficiency in the datacenter with new os abstractions. In Proceedings
of the 2Nd ACM Symposium on Cloud Computing, SOCC ’11, pages 25:1–
25:8, New York, NY, USA, 2011. ACM.

[THH+11] J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel, W. Schröder-
Preikschat, and G. Snelting. Invasive Computing – An Overview. In
Multiprocessor System-on-Chip. Springer New York, 2011.

42

	Zusammenfassung
	Application View
	Logical View
	Layers and Object Types
	Core Abstractions: Kernel Objects
	Concurrency Control: Tasklets, Monitors, Lock-Free Algorithms
	Dynamic Resource Management through Capabilities
	Physical Memory and Address Space Management
	User Access through Capability Spaces

	Physical View
	Locality Control via Monitors and Scheduling Contexts
	Logical Address Spaces: Kernel versus User Space
	Kernel-Space Memory Management: Physical Memory
	Core-Local Memory: FS/GS Segment Base

	Dynamic View
	Error handling: IPC Messages to Supervisor
	Concurrent Object Deallocation
	Credit-based Flow Control
	Boot Sequence
	Portal: States and Operations

	Implementation View
	Compile- and Run-Time Dependency Injection
	Source Code Composition: Code Modules
	Interacting Asynchronous Objects via Tasklets
	Managing the Resource Inheritance Tree
	Operation Implementation in the Inheritance Tree
	Invocation Handling

